Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matl...Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.展开更多
To fulfill the stringent requirement, super-precision positioning and ultra cleanness, a surface motor with the integrated chip fabrication equipment is constructed by using permanent magnets and electromagnet coils a...To fulfill the stringent requirement, super-precision positioning and ultra cleanness, a surface motor with the integrated chip fabrication equipment is constructed by using permanent magnets and electromagnet coils as primary actuating components. It consists of stator and mover, and the mover is isolated from the stator by the magnetic beating. The magnetic bearing in the stator is composed of eight air core electromagnet coils, the propulsion in the stator is composed of iron core and electromagnetic coils, and the mover is composed of NdFeB permanent magnets and levitated stage. Based on Lorentz law, some parameters, including permanent magnets dimensions, currents and levitation height, which may affect the stability, are analyzed and optimized. To improve the positioning accuracy in the vertical direction of the magnetic levitation surface motor, a robust controller is proposed using H∞ mixed sensitivity control theory. The simulation results show that by choosing appropriate weight functions, the controller can ensure the robustness of the closed loop system under the presence of uncertainties, and the H∞ robust controller is excellent for reducing steady error and increasing response speed.展开更多
Aberration-corrected focus scanning is crucial for high-precision optics,but the conventional optical systems rely on bulky and complicated dynamic correctors.Recently,Shiyi Xiao's group proposed a method using tw...Aberration-corrected focus scanning is crucial for high-precision optics,but the conventional optical systems rely on bulky and complicated dynamic correctors.Recently,Shiyi Xiao's group proposed a method using two rotating cascaded transmissive metasurfaces for adaptive aberration correction in focus scanning.The optimized phase profiles enable precise control of the focal position for scanning custom-curved surfaces.This concept was experimentally validated by two allsilicon meta-devices in the terahertz regime,paving the way for high-precision and compact optical devices in various applications.展开更多
基金supported by the International S&T Cooperation Program of China(GrantNo.2010DFB43660)National Natural Science Foundation of China(Grant No.51375286)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.16JF005)
文摘Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.
基金supported by National Natural Science Foundation of China (No. 50475091,No.50505035,No.50575176)National Basic Research Program of China (973 Program, No. 2005CB724106)New Century Excellent Person Support Plan of Ministry of Education of China (No. NCET-04-0935).
文摘To fulfill the stringent requirement, super-precision positioning and ultra cleanness, a surface motor with the integrated chip fabrication equipment is constructed by using permanent magnets and electromagnet coils as primary actuating components. It consists of stator and mover, and the mover is isolated from the stator by the magnetic beating. The magnetic bearing in the stator is composed of eight air core electromagnet coils, the propulsion in the stator is composed of iron core and electromagnetic coils, and the mover is composed of NdFeB permanent magnets and levitated stage. Based on Lorentz law, some parameters, including permanent magnets dimensions, currents and levitation height, which may affect the stability, are analyzed and optimized. To improve the positioning accuracy in the vertical direction of the magnetic levitation surface motor, a robust controller is proposed using H∞ mixed sensitivity control theory. The simulation results show that by choosing appropriate weight functions, the controller can ensure the robustness of the closed loop system under the presence of uncertainties, and the H∞ robust controller is excellent for reducing steady error and increasing response speed.
文摘Aberration-corrected focus scanning is crucial for high-precision optics,but the conventional optical systems rely on bulky and complicated dynamic correctors.Recently,Shiyi Xiao's group proposed a method using two rotating cascaded transmissive metasurfaces for adaptive aberration correction in focus scanning.The optimized phase profiles enable precise control of the focal position for scanning custom-curved surfaces.This concept was experimentally validated by two allsilicon meta-devices in the terahertz regime,paving the way for high-precision and compact optical devices in various applications.