Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial...Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pretraining.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of t...We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains.展开更多
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use...This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.展开更多
Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making sys...Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making.展开更多
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ...BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.展开更多
Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual pat...Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment.展开更多
Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Class...Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Classifier(GPT2-ICC),which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins.GPT2-ICC integrates representation learning with a large language model(LLM)-based classifier,enabling highly accurate identification of potential ion channels.Several potential ion channels were predicated from the unannotated human proteome,further demonstrating GPT2-ICC’s generalization ability.This study marks a significant advancement in artificial-intelligence-driven ion channel research,highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data.Moreover,it provides a valuable computational tool for uncovering previously uncharacterized ion channels.展开更多
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn...Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.展开更多
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ...Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.展开更多
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
Sentiment analysis,a cornerstone of natural language processing,has witnessed remarkable advancements driven by deep learning models which demonstrated impressive accuracy in discerning sentiment from text across vari...Sentiment analysis,a cornerstone of natural language processing,has witnessed remarkable advancements driven by deep learning models which demonstrated impressive accuracy in discerning sentiment from text across various domains.However,the deployment of such models in resource-constrained environments presents a unique set of challenges that require innovative solutions.Resource-constrained environments encompass scenarios where computing resources,memory,and energy availability are restricted.To empower sentiment analysis in resource-constrained environments,we address the crucial need by leveraging lightweight pre-trained models.These models,derived from popular architectures such as DistilBERT,MobileBERT,ALBERT,TinyBERT,ELECTRA,and SqueezeBERT,offer a promising solution to the resource limitations imposed by these environments.By distilling the knowledge from larger models into smaller ones and employing various optimization techniques,these lightweight models aim to strike a balance between performance and resource efficiency.This paper endeavors to explore the performance of multiple lightweight pre-trained models in sentiment analysis tasks specific to such environments and provide insights into their viability for practical deployment.展开更多
Visual language pre-training(VLP)models have demonstrated significant success in various domains,but they remain vulnerable to adversarial attacks.Addressing these adversarial vulnerabilities is crucial for enhancing ...Visual language pre-training(VLP)models have demonstrated significant success in various domains,but they remain vulnerable to adversarial attacks.Addressing these adversarial vulnerabilities is crucial for enhancing security in multi-modal learning.Traditionally,adversarial methods that target VLP models involve simultaneous perturbation of images and text.However,this approach faces significant challenges.First,adversarial perturbations often fail to translate effectively into real-world scenarios.Second,direct modifications to the text are conspicuously visible.To overcome these limitations,we propose a novel strategy that uses only image patches for attacks,thus preserving the integrity of the original text.Our method leverages prior knowledge from diffusion models to enhance the authenticity and naturalness of the perturbations.Moreover,to optimize patch placement and improve the effectiveness of our attacks,we utilize the cross-attention mechanism,which encapsulates inter-modal interactions by generating attention maps to guide strategic patch placement.Extensive experiments conducted in a white-box setting for image-to-text scenarios reveal that our proposed method significantly outperforms existing techniques,achieving a 100%attack success rate.展开更多
The Coronavirus Disease 2019(COVID-19)is wreaking havoc around the world,bring out that the enormous pressure on national health and medical staff systems.One of the most effective and critical steps in the fight agai...The Coronavirus Disease 2019(COVID-19)is wreaking havoc around the world,bring out that the enormous pressure on national health and medical staff systems.One of the most effective and critical steps in the fight against COVID-19,is to examine the patient’s lungs based on the Chest X-ray and CT generated by radiation imaging.In this paper,five keras-related deep learning models:ResNet50,InceptionResNetV2,Xception,transfer learning and pre-trained VGGNet16 is applied to formulate an classification-detection approaches of COVID-19.Two benchmark methods SVM(Support Vector Machine),CNN(Conventional Neural Networks)are provided to compare with the classification-detection approaches based on the performance indicators,i.e.,precision,recall,F1 scores,confusion matrix,classification accuracy and three types of AUC(Area Under Curve).The highest classification accuracy derived by classification-detection based on 5857 Chest X-rays and 767 Chest CTs are respectively 84%and 75%,which shows that the keras-related deep learning approaches facilitate accurate and effective COVID-19-assisted detection.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for mo...Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health.展开更多
Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective...Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective way of sorting.Owing to significant domain gaps between natural images and kitchen waste images,it is difficult to reflect the characteristics of diverse scales and dense distribution in kitchen waste based on an ImageNet pre-trained model,leading to poor generalisation.In this article,the authors propose the first pre-trained model for kitchen waste sorting called KitWaSor,which combines both contrastive learning(CL)and masked image modelling(MIM)through self-supervised learning(SSL).First,to address the issue of diverse scales,the authors propose a mixed masking strategy by introducing an incomplete masking branch based on the original random masking branch.It prevents the complete loss of small-scale objects while avoiding excessive leakage of large-scale object pixels.Second,to address the issue of dense distribution,the authors introduce semantic consistency constraints on the basis of the mixed masking strategy.That is,object semantic reasoning is performed through semantic consistency constraints to compensate for the lack of contextual information.To train KitWaSor,the authors construct the first million-level kitchen waste dataset across seasonal and regional distributions,named KWD-Million.Extensive experiments show that KitWaSor achieves state-of-the-art(SOTA)performance on the two most relevant downstream tasks for kitchen waste sorting(i.e.image classification and object detection),demonstrating the effectiveness of the proposed KitWaSor.展开更多
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an...Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.展开更多
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have in...Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications.展开更多
Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experienci...Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:U23A20530,82273858,and 82173746)the National Key Research and Development Programof China(Grant No.:2023YFF1204904)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission,China).
文摘Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pretraining.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
文摘We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains.
基金funded by the Office of the Vice-President for Research and Development of Cebu Technological University.
文摘This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.
基金supported by the Central Government Guiding Local Science and Technology Development Fund Project(No.2024SZY0343)the Joint Research Program for Ecological Conservation and High Quality Development of the Yellow River Basin(No.2022-YRUC-01-050205)+2 种基金the Higher Education Scientific Research Project of Inner Mongolia Autonomous Region(No.NJZZ23078)the project of Inner Mongolia"Prairie Talents"Engineering Innovation Entrepreneurship Talent Team,the Major Projects of Erdos Science and Technology(No.2022EEDSKJZDZX015)the Innovation Team of the Inner Mongolia Academy of Science and Technology(No.CXTD2023-01-016).
文摘Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making.
基金Supported by the National Key Specialty of Traditional Chinese Medicine(Spleen and Stomach Diseases),No.0500004National Natural Science Foundation of China,No.82205104 and No.82104850+1 种基金Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0303-07the Fundamental Research Funds for the Central Public Welfare Research Institutes,Excellent Young Scientists Training Program of China Academy of Chinese Medical Sciences,No.ZZ16-YQ-002.
文摘BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.
基金supported by the Natural Science Foundation of Guangdong Province(No.2021B1515120053)Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515140166).
文摘Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment.
基金funded by grants from the National Key Research and Development Program of China(Grant Nos.:2022YFE0205600 and 2022YFC3400504)the National Natural Science Foundation of China(Grant Nos.:82373792 and 82273857)the Fundamental Research Funds for the Central Universities,China,and the East China Normal University Medicine and Health Joint Fund,China(Grant No.:2022JKXYD07001).
文摘Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Classifier(GPT2-ICC),which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins.GPT2-ICC integrates representation learning with a large language model(LLM)-based classifier,enabling highly accurate identification of potential ion channels.Several potential ion channels were predicated from the unannotated human proteome,further demonstrating GPT2-ICC’s generalization ability.This study marks a significant advancement in artificial-intelligence-driven ion channel research,highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data.Moreover,it provides a valuable computational tool for uncovering previously uncharacterized ion channels.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation):project ID 431549029-SFB 1451the Marga-und-Walter-Boll-Stiftung(#210-10-15)(to MAR)a stipend from the'Gerok Program'(Faculty of Medicine,University of Cologne,Germany)。
文摘Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
文摘Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.
文摘Sentiment analysis,a cornerstone of natural language processing,has witnessed remarkable advancements driven by deep learning models which demonstrated impressive accuracy in discerning sentiment from text across various domains.However,the deployment of such models in resource-constrained environments presents a unique set of challenges that require innovative solutions.Resource-constrained environments encompass scenarios where computing resources,memory,and energy availability are restricted.To empower sentiment analysis in resource-constrained environments,we address the crucial need by leveraging lightweight pre-trained models.These models,derived from popular architectures such as DistilBERT,MobileBERT,ALBERT,TinyBERT,ELECTRA,and SqueezeBERT,offer a promising solution to the resource limitations imposed by these environments.By distilling the knowledge from larger models into smaller ones and employing various optimization techniques,these lightweight models aim to strike a balance between performance and resource efficiency.This paper endeavors to explore the performance of multiple lightweight pre-trained models in sentiment analysis tasks specific to such environments and provide insights into their viability for practical deployment.
基金supported by the Open Research Fund of The State Key Laboratory of Blockchain and Data Security,Zhejiang University,the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.23xkjc010)Shenzhen Science and Technology Program(Nos.RCYX20221008092849068,JCYJ20220530145209022,KOTD20221101093559018,and JCYJ20220818102012025).
文摘Visual language pre-training(VLP)models have demonstrated significant success in various domains,but they remain vulnerable to adversarial attacks.Addressing these adversarial vulnerabilities is crucial for enhancing security in multi-modal learning.Traditionally,adversarial methods that target VLP models involve simultaneous perturbation of images and text.However,this approach faces significant challenges.First,adversarial perturbations often fail to translate effectively into real-world scenarios.Second,direct modifications to the text are conspicuously visible.To overcome these limitations,we propose a novel strategy that uses only image patches for attacks,thus preserving the integrity of the original text.Our method leverages prior knowledge from diffusion models to enhance the authenticity and naturalness of the perturbations.Moreover,to optimize patch placement and improve the effectiveness of our attacks,we utilize the cross-attention mechanism,which encapsulates inter-modal interactions by generating attention maps to guide strategic patch placement.Extensive experiments conducted in a white-box setting for image-to-text scenarios reveal that our proposed method significantly outperforms existing techniques,achieving a 100%attack success rate.
基金This project is supported by National Natural Science Foundation of China(NSFC)(Nos.61902158,61806087)Graduate student innovation program for academic degrees in general university in Jiangsu Province(No.KYZZ16-0337).
文摘The Coronavirus Disease 2019(COVID-19)is wreaking havoc around the world,bring out that the enormous pressure on national health and medical staff systems.One of the most effective and critical steps in the fight against COVID-19,is to examine the patient’s lungs based on the Chest X-ray and CT generated by radiation imaging.In this paper,five keras-related deep learning models:ResNet50,InceptionResNetV2,Xception,transfer learning and pre-trained VGGNet16 is applied to formulate an classification-detection approaches of COVID-19.Two benchmark methods SVM(Support Vector Machine),CNN(Conventional Neural Networks)are provided to compare with the classification-detection approaches based on the performance indicators,i.e.,precision,recall,F1 scores,confusion matrix,classification accuracy and three types of AUC(Area Under Curve).The highest classification accuracy derived by classification-detection based on 5857 Chest X-rays and 767 Chest CTs are respectively 84%and 75%,which shows that the keras-related deep learning approaches facilitate accurate and effective COVID-19-assisted detection.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
基金supported by the Bill & Melinda Gates Foundation and the Minderoo Foundation
文摘Predicting cross-immunity between viral strains is vital for public health surveillance and vaccine development.Traditional neural network methods,such as BiLSTM,could be ineffective due to the lack of lab data for model training and the overshadowing of crucial features within sequence concatenation.The current work proposes a less data-consuming model incorporating a pre-trained gene sequence model and a mutual information inference operator.Our methodology utilizes gene alignment and deduplication algorithms to preprocess gene sequences,enhancing the model’s capacity to discern and focus on distinctions among input gene pairs.The model,i.e.,DNA Pretrained Cross-Immunity Protection Inference model(DPCIPI),outperforms state-of-theart(SOTA)models in predicting hemagglutination inhibition titer from influenza viral gene sequences only.Improvement in binary cross-immunity prediction is 1.58%in F1,2.34%in precision,1.57%in recall,and 1.57%in Accuracy.For multilevel cross-immunity improvements,the improvement is 2.12%in F1,3.50%in precision,2.19%in recall,and 2.19%in Accuracy.Our study showcases the potential of pre-trained gene models to improve predictions of antigenic variation and cross-immunity.With expanding gene data and advancements in pre-trained models,this approach promises significant impacts on vaccine development and public health.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC1910402。
文摘Intelligent sorting is an important prerequisite for the full quantitative consumption and harmless disposal of kitchen waste.The existing object detection method based on an ImageNet pre-trained model is an effective way of sorting.Owing to significant domain gaps between natural images and kitchen waste images,it is difficult to reflect the characteristics of diverse scales and dense distribution in kitchen waste based on an ImageNet pre-trained model,leading to poor generalisation.In this article,the authors propose the first pre-trained model for kitchen waste sorting called KitWaSor,which combines both contrastive learning(CL)and masked image modelling(MIM)through self-supervised learning(SSL).First,to address the issue of diverse scales,the authors propose a mixed masking strategy by introducing an incomplete masking branch based on the original random masking branch.It prevents the complete loss of small-scale objects while avoiding excessive leakage of large-scale object pixels.Second,to address the issue of dense distribution,the authors introduce semantic consistency constraints on the basis of the mixed masking strategy.That is,object semantic reasoning is performed through semantic consistency constraints to compensate for the lack of contextual information.To train KitWaSor,the authors construct the first million-level kitchen waste dataset across seasonal and regional distributions,named KWD-Million.Extensive experiments show that KitWaSor achieves state-of-the-art(SOTA)performance on the two most relevant downstream tasks for kitchen waste sorting(i.e.image classification and object detection),demonstrating the effectiveness of the proposed KitWaSor.
基金in part supported by the National Natural Science Foundation of China(Grant Nos.42288101,42405147 and 42475054)in part by the China National Postdoctoral Program for Innovative Talents(Grant No.BX20230071)。
文摘Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.
基金supported in part by National Natural Science Foundation of China(62441605)。
文摘Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications.
基金supported by the Brain&Behavior Research Foundation(30233).
文摘Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention.