期刊文献+
共找到9,319篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Relational Triple Extraction in Specific Domains:Semantic Enhancement and Synergy of Large Language Models and Small Pre-Trained Language Models 被引量:1
1
作者 Jiakai Li Jianpeng Hu Geng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2481-2503,共23页
In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e... In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach. 展开更多
关键词 Relational triple extraction semantic interaction large language models data augmentation specific domains
在线阅读 下载PDF
Adapter Based on Pre-Trained Language Models for Classification of Medical Text
2
作者 Quan Li 《Journal of Electronic Research and Application》 2024年第3期129-134,共6页
We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract informa... We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach. 展开更多
关键词 Classification of medical text ADAPTER pre-trained language model
在线阅读 下载PDF
Multilingual Text Summarization in Healthcare Using Pre-Trained Transformer-Based Language Models
3
作者 Josua Käser Thomas Nagy +1 位作者 Patrick Stirnemann Thomas Hanne 《Computers, Materials & Continua》 2025年第4期201-217,共17页
We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of t... We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains. 展开更多
关键词 Text summarization pre-trained transformer-based language models large language models technical healthcare texts natural language processing
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
4
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
Evaluating research quality with Large Language Models:An analysis of ChatGPT’s effectiveness with different settings and inputs 被引量:1
5
作者 Mike Thelwall 《Journal of Data and Information Science》 2025年第1期7-25,共19页
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ... Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations. 展开更多
关键词 ChatGPT Large language models LLMs SCIENTOMETRICS Research Assessment
在线阅读 下载PDF
On large language models safety,security,and privacy:A survey 被引量:1
6
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 Large language models Privacy issues Safety issues Security issues
在线阅读 下载PDF
When Software Security Meets Large Language Models:A Survey 被引量:1
7
作者 Xiaogang Zhu Wei Zhou +3 位作者 Qing-Long Han Wanlun Ma Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期317-334,共18页
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ... Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research. 展开更多
关键词 Large language models(LLMs) software analysis software security software testing
在线阅读 下载PDF
The Security of Using Large Language Models:A Survey With Emphasis on ChatGPT 被引量:1
8
作者 Wei Zhou Xiaogang Zhu +4 位作者 Qing-Long Han Lin Li Xiao Chen Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期1-26,共26页
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec... ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users. 展开更多
关键词 Artificial intelligence(AI) ChatGPT large language models(LLMs) SECURITY
在线阅读 下载PDF
Evaluating large language models as patient education tools for inflammatory bowel disease:A comparative study 被引量:1
9
作者 Yan Zhang Xiao-Han Wan +6 位作者 Qing-Zhou Kong Han Liu Jun Liu Jing Guo Xiao-Yun Yang Xiu-Li Zuo Yan-Qing Li 《World Journal of Gastroenterology》 2025年第6期34-43,共10页
BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patie... BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided. 展开更多
关键词 Inflammatory bowel disease Large language models Patient education Medical information accuracy Readability assessment
暂未订购
Optimizing Fine-Tuning in Quantized Language Models:An In-Depth Analysis of Key Variables
10
作者 Ao Shen Zhiquan Lai +1 位作者 Dongsheng Li Xiaoyu Hu 《Computers, Materials & Continua》 SCIE EI 2025年第1期307-325,共19页
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci... Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments. 展开更多
关键词 Large-scale language model Parameter-Efficient Fine-Tuning parameter quantization key variable trainable parameters experimental analysis
在线阅读 下载PDF
GLMTopic:A Hybrid Chinese Topic Model Leveraging Large Language Models
11
作者 Weisi Chen Walayat Hussain Junjie Chen 《Computers, Materials & Continua》 2025年第10期1559-1583,共25页
Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasi... Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasingly rely on large-scale social media data to explore public discourse,collective behavior,and emerging social concerns.However,traditional models like Latent Dirichlet Allocation(LDA)and neural topic models like BERTopic struggle to capture deep semantic structures in short-text datasets,especially in complex non-English languages like Chinese.This paper presents Generative Language Model Topic(GLMTopic)a novel hybrid topic modeling framework leveraging the capabilities of large language models,designed to support social science research by uncovering coherent and interpretable themes from Chinese social media platforms.GLMTopic integrates Adaptive Community-enhanced Graph Embedding for advanced semantic representation,Uniform Manifold Approximation and Projection-based(UMAP-based)dimensionality reduction,Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)clustering,and large language model-powered(LLM-powered)representation tuning to generate more contextually relevant and interpretable topics.By reducing dependence on extensive text preprocessing and human expert intervention in post-analysis topic label annotation,GLMTopic facilitates a fully automated and user-friendly topic extraction process.Experimental evaluations on a social media dataset sourced from Weibo demonstrate that GLMTopic outperforms Latent Dirichlet Allocation(LDA)and BERTopic in coherence score and usability with automated interpretation,providing a more scalable and semantically accurate solution for Chinese topic modeling.Future research will explore optimizing computational efficiency,integrating knowledge graphs and sentiment analysis for more complicated workflows,and extending the framework for real-time and multilingual topic modeling. 展开更多
关键词 Topic modeling large language model deep learning natural language processing text mining
在线阅读 下载PDF
The Synergy of Seeing and Saying: Revolutionary Advances in Multi-modality Medical Vision-Language Large Models
12
作者 Xiang LI Yu SUN +3 位作者 Jia LIN Like LI Ting FENG Shen YIN 《Artificial Intelligence Science and Engineering》 2025年第2期79-97,共19页
The application of visual-language large models in the field of medical health has gradually become a research focus.The models combine the capability for image understanding and natural language processing,and can si... The application of visual-language large models in the field of medical health has gradually become a research focus.The models combine the capability for image understanding and natural language processing,and can simultaneously process multi-modality data such as medical images and medical reports.These models can not only recognize images,but also understand the semantic relationship between images and texts,effectively realize the integration of medical information,and provide strong support for clinical decision-making and disease diagnosis.The visual-language large model has good performance for specific medical tasks,and also shows strong potential and high intelligence in the general task models.This paper provides a comprehensive review of the visual-language large model in the field of medical health.Specifically,this paper first introduces the basic theoretical basis and technical principles.Then,this paper introduces the specific application scenarios in the field of medical health,including modality fusion,semi-supervised learning,weakly supervised learning,unsupervised learning,cross-domain model and general models.Finally,the challenges including insufficient data,interpretability,and practical deployment are discussed.According to the existing challenges,four potential future development directions are given. 展开更多
关键词 large language models vision-language models medical health multimodality models
在线阅读 下载PDF
Adapting High-Level Language Programming(C Language)Education in the Era of Large Language Models
13
作者 Baokai Zu Hongyuan Wang +1 位作者 Hongli Chen Yafang Li 《Journal of Contemporary Educational Research》 2025年第5期264-269,共6页
With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunitie... With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunities.As a core programming language for computer science majors,C language remains irreplaceable due to its foundational nature and engineering adaptability.This paper,based on the rapid development of large model technologies,proposes a systematic reform design for C language teaching,focusing on teaching objectives,content structure,teaching methods,and evaluation systems.The article suggests a teaching framework centered on“human-computer collaborative programming,”integrating prompt training,AI-assisted debugging,and code generation analysis,aiming to enhance students’problem modeling ability,programming expression skills,and AI collaboration literacy. 展开更多
关键词 Large language models(LLMs) High-level language programming C language Human-computer collaborative programming
在线阅读 下载PDF
Rethinking Chart Understanding Using Multimodal Large Language Models
14
作者 Andreea-Maria Tanasa Simona-Vasilica Oprea 《Computers, Materials & Continua》 2025年第8期2905-2933,共29页
Extracting data from visually rich documents and charts using traditional methods that rely on OCR-based parsing poses multiple challenges,including layout complexity in unstructured formats,limitations in recognizing... Extracting data from visually rich documents and charts using traditional methods that rely on OCR-based parsing poses multiple challenges,including layout complexity in unstructured formats,limitations in recognizing visual elements,and the correlation between different parts of the documents,as well as domain-specific semantics.Simply extracting text is not sufficient;advanced reasoning capabilities are proving to be essential to analyze content and answer questions accurately.This paper aims to evaluate the ability of the Large Language Models(LLMs)to correctly answer questions about various types of charts,comparing their performance when using images as input versus directly parsing PDF files.To retrieve the images from the PDF,ColPali,a model leveraging state-of-the-art visual languagemodels,is used to identify the relevant page containing the appropriate chart for each question.Google’s Gemini multimodal models were used to answer a set of questions through two approaches:1)processing images derived from PDF documents and 2)directly utilizing the content of the same PDFs.Our findings underscore the limitations of traditional OCR-based approaches in visual document understanding(VrDU)and demonstrate the advantages of multimodal methods in both data extraction and reasoning tasks.Through structured benchmarking of chart question answering(CQA)across input formats,our work contributes to the advancement of chart understanding(CU)and the broader field of multimodal document analysis.Using two diverse and information-rich sources:the World Health Statistics 2024 report by theWorld Health Organisation and the Global Banking Annual Review 2024 by McKinsey&Company,we examine the performance ofmultimodal LLMs across different input modalities,comparing their effectiveness in processing charts as images versus parsing directly from PDF content.These documents were selected due to their multimodal nature,combining dense textual analysis with varied visual representations,thus presenting realistic challenges for vision-language models.This comparison is aimed at assessing how advanced models perform with different input formats and to determine if an image-based approach enhances chart comprehension in terms of accurate data extraction and reasoning capabilities. 展开更多
关键词 Chart understanding large language models multimodal models PDF extraction
在线阅读 下载PDF
Large language models in neuro-ophthalmology diseases:ChatGPT vs Bard vs Bing
15
作者 Dong Hee Ha Ungsoo Samuel Kim 《International Journal of Ophthalmology(English edition)》 2025年第7期1231-1236,共6页
AIM:To investigate the capabilities of large language models(LLM)for providing information and diagnoses in the field of neuro-ophthalmology by comparing the performances of ChatGPT-3.5 and-4.0,Bard,and Bing.METHODS:E... AIM:To investigate the capabilities of large language models(LLM)for providing information and diagnoses in the field of neuro-ophthalmology by comparing the performances of ChatGPT-3.5 and-4.0,Bard,and Bing.METHODS:Each chatbot was evaluated for four criteria,namely diagnostic success rate for the described case,answer quality,response speed,and critical keywords for diagnosis.The selected topics included optic neuritis,nonarteritic anterior ischemic optic neuropathy,and Leber hereditary optic neuropathy.RESULTS:In terms of diagnostic success rate for the described cases,Bard was unable to provide a diagnosis.The success rates for the described cases increased in the order of Bing,ChatGPT-3.5,and ChatGPT-4.0.Further,ChatGPT-4.0 and-3.5 provided the most satisfactory answer quality for judgment by neuro-ophthalmologists,with their sets of answers resembling the sample set most.Bard was only able to provide ten differential diagnoses in three trials.Bing scored the lowest for the satisfactory standard.A Mann-Whitney test indicated that Bard was significantly faster than ChatGPT-4.0(Z=-3.576,P=0.000),ChatGPT-3.5(Z=-3.576,P=0.000)and Bing(Z=-2.517,P=0.011).ChatGPT-3.5 and-4.0 far exceeded the other two interfaces at providing diagnoses and were thus used to find the critical keywords for diagnosis.CONCLUSION:ChatGPT-3.5 and-4.0 are better than Bard and Bing in terms of answer success rate,answer quality,and critical keywords for diagnosis in ophthalmology.This study has broad implications for the field of ophthalmology,providing further evidence that artificial intelligence LLM can aid clinical decision-making through free-text explanations. 展开更多
关键词 large language model chatbot ChatGPT BARD BING NEURO-OPHTHALMOLOGY
原文传递
Anime Generation through Diffusion and Language Models:A Comprehensive Survey of Techniques and Trends
16
作者 Yujie Wu Xing Deng +4 位作者 Haijian Shao Ke Cheng Ming Zhang Yingtao Jiang Fei Wang 《Computer Modeling in Engineering & Sciences》 2025年第9期2709-2778,共70页
The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation... The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation,focusing on their demonstrated potential to enhance production efficiency through automation and personalization.Despite these benefits,it is crucial to acknowledge the substantial initial computational investments required for training and deploying these models.We conduct an in-depth survey of cutting-edge generative AI technologies,encompassing models such as Stable Diffusion and GPT,and appraise pivotal large-scale datasets alongside quantifiable evaluation metrics.Review of the surveyed literature indicates the achievement of considerable maturity in the capacity of AI models to synthesize high-quality,aesthetically compelling anime visual images from textual prompts,alongside discernible progress in the generation of coherent narratives.However,achieving perfect long-form consistency,mitigating artifacts like flickering in video sequences,and enabling fine-grained artistic control remain critical ongoing challenges.Building upon these advancements,research efforts have increasingly pivoted towards the synthesis of higher-dimensional content,such as video and three-dimensional assets,with recent studies demonstrating significant progress in this burgeoning field.Nevertheless,formidable challenges endure amidst these advancements.Foremost among these are the substantial computational exigencies requisite for training and deploying these sophisticated models,particularly pronounced in the realm of high-dimensional generation such as video synthesis.Additional persistent hurdles include maintaining spatial-temporal consistency across complex scenes and mitigating ethical considerations surrounding bias and the preservation of human creative autonomy.This research underscores the transformative potential and inherent complexities of AI-driven synergy within the creative industries.We posit that future research should be dedicated to the synergistic fusion of diffusion and autoregressive models,the integration of multimodal inputs,and the balanced consideration of ethical implications,particularly regarding bias and the preservation of human creative autonomy,thereby establishing a robust foundation for the advancement of anime creation and the broader landscape of AI-driven content generation. 展开更多
关键词 Diffusion models language models anime generation image synthesis video generation stable diffusion AIGC
在线阅读 下载PDF
The Development of Large Language Models in the Financial Field
17
作者 Yanling Liu Yun Li 《Proceedings of Business and Economic Studies》 2025年第2期49-54,共6页
With the rapid development of natural language processing(NLP)and machine learning technology,applying large language models(LLMs)in the financial field shows a significant growth trend.This paper systematically revie... With the rapid development of natural language processing(NLP)and machine learning technology,applying large language models(LLMs)in the financial field shows a significant growth trend.This paper systematically reviews the development status,main applications,challenges,and future development direction of LLMs in the financial field.Financial Language models(FinLLMs)have been successfully applied to many scenarios,such as sentiment analysis,automated trading,risk assessment,etc.,through deep learning architectures such as BERT,Llama,and domain data fine-tuning.However,issues such as data privacy,model interpretability,and ethical governance still pose constraints to their widespread application.Future research should focus on improving model performance,addressing bias issues,strengthening privacy protection,and establishing a sound regulatory framework to ensure the healthy development of LLMs in the financial sector. 展开更多
关键词 Large language model Fintech Natural language processing Ethics of artificial intelligence
在线阅读 下载PDF
A Critical Review of Methods and Challenges in Large Language Models
18
作者 Milad Moradi Ke Yan +2 位作者 David Colwell Matthias Samwald Rhona Asgari 《Computers, Materials & Continua》 2025年第2期1681-1698,共18页
This critical review provides an in-depth analysis of Large Language Models(LLMs),encompassing their foundational principles,diverse applications,and advanced training methodologies.We critically examine the evolution... This critical review provides an in-depth analysis of Large Language Models(LLMs),encompassing their foundational principles,diverse applications,and advanced training methodologies.We critically examine the evolution from Recurrent Neural Networks(RNNs)to Transformer models,highlighting the significant advancements and innovations in LLM architectures.The review explores state-of-the-art techniques such as in-context learning and various fine-tuning approaches,with an emphasis on optimizing parameter efficiency.We also discuss methods for aligning LLMs with human preferences,including reinforcement learning frameworks and human feedback mechanisms.The emerging technique of retrieval-augmented generation,which integrates external knowledge into LLMs,is also evaluated.Additionally,we address the ethical considerations of deploying LLMs,stressing the importance of responsible and mindful application.By identifying current gaps and suggesting future research directions,this review provides a comprehensive and critical overview of the present state and potential advancements in LLMs.This work serves as an insightful guide for researchers and practitioners in artificial intelligence,offering a unified perspective on the strengths,limitations,and future prospects of LLMs. 展开更多
关键词 Large language models artificial intelligence natural language processing machine learning generative artificial intelligence
在线阅读 下载PDF
Urgent needs,opportunities and challenges of virtual reality in healthcare and medicine in the era of large language models
19
作者 Xinming XU Haoxuan LI +10 位作者 Zhouyu GUAN Dian ZENG Qingqing ZHENG Yiming QIN Yang WEN Huating LI Chwee Teck LIM Tien Yin WONG Enhua WU Weiping JIA Bin SHENG 《虚拟现实与智能硬件(中英文)》 2025年第5期453-467,共15页
The convergence of large language models(LLMs)and virtual reality(VR)technologies has led to significant breakthroughs across multiple domains,particularly in healthcare and medicine.Owing to its immersive and interac... The convergence of large language models(LLMs)and virtual reality(VR)technologies has led to significant breakthroughs across multiple domains,particularly in healthcare and medicine.Owing to its immersive and interactive capabilities,VR technology has demonstrated exceptional utility in surgical simulation,rehabilitation,physical therapy,mental health,and psychological treatment.By creating highly realistic and precisely controlled environments,VR not only enhances the efficiency of medical training but also enables personalized therapeutic approaches for patients.The convergence of LLMs and VR extends the potential of both technologies.LLM-empowered VR can transform medical education through interactive learning platforms and address complex healthcare challenges using comprehensive solutions.This convergence enhances the quality of training,decision-making,and patient engagement,paving the way for innovative healthcare delivery.This study aims to comprehensively review the current applications,research advancements,and challenges associated with these two technologies in healthcare and medicine.The rapid evolution of these technologies is driving the healthcare industry toward greater intelligence and precision,establishing them as critical forces in the transformation of modern medicine. 展开更多
关键词 Large language model Virtual reality Healthcare MEDICINE
在线阅读 下载PDF
Large language models’performances regarding common patient questions about osteoarthritis:A comparative analysis of ChatGPT-3.5,ChatGPT-4.0,and Perplexity
20
作者 Mingde Cao Qianwen Wang +4 位作者 Xueyou Zhang Zuru Liang Jihong Qiu Patrick Shu-Hang Yung Michael Tim-Yun Ong 《Journal of Sport and Health Science》 2025年第4期3-10,共8页
Background:Large Language Models(LLMs)have gained much attention and,in part,have replaced common search engines as a popular channel for obtaining information due to their contextually relevant responses.Osteoarthrit... Background:Large Language Models(LLMs)have gained much attention and,in part,have replaced common search engines as a popular channel for obtaining information due to their contextually relevant responses.Osteoarthritis(OA)is a common topic in skeletal muscle disor-ders,and patients often seek information about it online.Our study evaluated the ability of 3 LLMs(ChatGPT-3.5,ChatGPT-4.0,and Perplexity)to accurately answer common OA-related queries.Methods:We defined 6 themes(pathogenesis,risk factors,clinical presentation,diagnosis,treatment and prevention,and prognosis)based on a generalization of 25 frequently asked questions about OA.Three consultant-level orthopedic specialists independently rated the LLMs’replies on a 4-point accuracy scale.Thefinal ratings for each response were determined using a majority consensus approach.Responses classified as“satisfactory”were evaluated for comprehensiveness on a 5-point scale.Results:ChatGPT-4.0 demonstrated superior accuracy,with 64%of responses rated as“excellent”,compared to 40%for ChatGPT-3.5 and 28%for Perplexity(Pearson’s x2 test with Fisher’s exact test,all p<0.001).All 3 LLM-chatbots had high mean comprehensiveness ratings(Perplexity=3.88;ChatGPT-4.0=4.56;ChatGPT-3.5=3.96,out of a maximum score of 5).The LLM-chatbots performed reliably across domains,except for“treatment and prevention”However,ChatGPT-4.0 still outperformed ChatGPT-3.5 and Perplexity,garnering 53.8%“excellent”ratings(Pearson’s x2 test with Fisher’s exact test,all p<0.001).Conclusion:Ourfindings underscore the potential of LLMs,specifically ChatGPT-4.0 and Perplexity,to deliver accurate and thorough responses to OA-related queries.Targeted correction of specific misconceptions to improve the accuracy of LLMs remains crucial. 展开更多
关键词 Large language models OSTEOARTHRITIS Primary care
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部