期刊文献+
共找到780篇文章
< 1 2 39 >
每页显示 20 50 100
Direct pre-stack depth migration on rugged topography
1
作者 周竹生 陈高祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2736-2742,共7页
Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by whi... Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by which static correction is completely abandoned before migration and surely the imaging quality is remarkably improved. To obtain some artificial shot gathers, high-order staggered-grid finite-difference (FD) method is adapted to model acoustic wave propagation. Since the shot gathers are always disturbed by regular interferences, the statics still must be applied to supporting the interference elimination by apparent velocity filtering method. Then all the shot gathers should be removed back to their original positions by reverse statics. Finally, they are migrated by pre-stack reverse-time depth migration and imaged. The numerical experiments show that the DPDM can ideally avoid the mistakes caused by statics and increase imaging precision. 展开更多
关键词 undulating topography seismic modeling static correction apparent velocity filtering direct pre-stack depth migration
在线阅读 下载PDF
Application of Gaussian beam pre-stack depth migration in rugged seabed
2
作者 HAN Fuxing YI Xin +3 位作者 SUN Zhangqing HU Jia XU Baoyin XU Hai 《Global Geology》 2021年第2期119-128,共10页
Strong fluctuation of seabed,abrupt variation in depth and dip of seabed bring seismic imaging problems,such as irregular reflection waves,obvious multiple waves,serious lateral wave development,poor imaging on base s... Strong fluctuation of seabed,abrupt variation in depth and dip of seabed bring seismic imaging problems,such as irregular reflection waves,obvious multiple waves,serious lateral wave development,poor imaging on base surface and depression structure,low signal-to-noise ratio of middle and deep layers.In this paper,Gaussian beam migration imaging method is used to analyze the imaging effect of rugged seabed in deep water area,and the ray tracing method of wavefront construction method is used to analyze the kinematic characteristics of seismic waves.By improving the design of seismic data acquisition and observation system,imaging quality of fine structures is improved. 展开更多
关键词 Gaussian beam migration wavefront construction method Gaussian beam pre-stack depth rugged seabed
在线阅读 下载PDF
Attenuation compensation in multicomponent Gaussian beam prestack depth migration 被引量:1
3
作者 吴娟 陈小宏 +1 位作者 白敏 刘国昌 《Applied Geophysics》 SCIE CSCD 2015年第2期157-168,273,274,共14页
Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structur... Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered. 展开更多
关键词 Attenuation compensation MULTICOMPONENT Gaussian beam viscoelastic simulation prestack depth migration
在线阅读 下载PDF
High angle prestack depth migration with absorption compensation 被引量:1
4
作者 周辉 林鹤 +1 位作者 盛善波 王颖 《Applied Geophysics》 SCIE CSCD 2012年第3期293-300,360,361,共10页
The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the ab... The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible. 展开更多
关键词 one-way wave equation prestack depth migration absorption compensation time-space domain
在线阅读 下载PDF
Accelerating f inite difference wavef ield-continuation depth migration by GPU
5
作者 刘国峰 孟小红 刘洪 《Applied Geophysics》 SCIE CSCD 2012年第1期41-48,115,共9页
The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware archite... The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware architecture, based on which the finite difference (FD) wavefield-continuation depth migration can be conducted using the Graphics Processing Unit (GPU) as a CPU coprocessor. We demonstrate the program module and three key optimization steps for implementing FD depth migration: memory, thread structure, and instruction optimizations and consider evaluation methods for the amount of optimization. 2D and 3D models are used to test depth migration on the GPU. The tested results show that the depth migration computational efficiency greatly increased using the general-purpose GPU, increasing by at least 25 times compared to the AMD 2.5 GHz CPU. 展开更多
关键词 Wavefield-continuation depth migration finite difference Graphic Processing Unit EFFICIENCY
在线阅读 下载PDF
Reverse-Time Prestack Depth Migration of GPR Data from Topography for Amplitude Reconstruction in Complex Environments 被引量:17
6
作者 John H.Bradford 《Journal of Earth Science》 SCIE CAS CSCD 2015年第6期791-798,共8页
With increased computational power, reverse-time prestack depth migration(RT-PSDM) has become a preferred imaging tool in seismic exploration, yet its use has remained relatively limited in ground-penetrating radar... With increased computational power, reverse-time prestack depth migration(RT-PSDM) has become a preferred imaging tool in seismic exploration, yet its use has remained relatively limited in ground-penetrating radar(GPR) applications. Complex topography alters the wavefield kinematics making for a challenging imaging problem. Model simulations show that topographic variation can substantially distort reflection amplitudes due to irregular wavefield spreading, attenuation anomalies due to irregular path lengths, and focusing and defocusing effects at the surface. The effects are magnified when the topographic variations are on the same order as the depth of investigation––a situation that is often encountered in GPR investigations. Here, I use a full wave-equation RT-PSDM algorithm to image GPR data in the presence of large topographic variability relative to the depth of investigation. The source and receiver wavefields are propagated directly from the topographic surface and this approach inherently corrects for irregular kinematics, spreading and attenuation. The results show that when GPR data are acquired in areas of extreme topography, RT-PSDM can accurately reconstruct reflector geometry as well as reflection amplitude. 展开更多
关键词 reverse-time prestack depth migration ground-penetrating radar TOPOGRAPHY wavefield reflector geometry reflection amplitude.
原文传递
Residual curvature migration velocity analysis for angle domain common imaging gathers 被引量:10
7
作者 张凯 李振春 +1 位作者 曾同生 董晓春 《Applied Geophysics》 SCIE CSCD 2010年第1期49-56,99,共9页
Pre-stack depth migration velocity analysis is one of the keys to influencing the imaging quality of pre-stack migration.In this paper we cover a residual curvature velocity analysis method on angle-domain common imag... Pre-stack depth migration velocity analysis is one of the keys to influencing the imaging quality of pre-stack migration.In this paper we cover a residual curvature velocity analysis method on angle-domain common image gathers(ADCIGs) which can depict the relationship between incident angle and migration depth at imaging points and update the migration velocity.Differing from offset-domain common image gathers(ODCIGs),ADCIGs are not disturbed by the multi-path problem which contributes to imaging artifacts,thus influencing the velocity analysis.On the basis of horizontal layers,we derive the residual depth equation and also propose a velocity analysis workflow for velocity scanning.The tests to synthetic and field data prove the velocity analysis methods adopted in this paper are robust and valid. 展开更多
关键词 pre-stack depth migration velocity analysis ADCIGs residual depth equation velocity scanning
在线阅读 下载PDF
Beamlet prestack depth migration and illumination: A test based on the Marmousi model 被引量:5
8
作者 Ye Yueming Li Zhenchun +1 位作者 Han Wengong Liu Qingmin 《Applied Geophysics》 SCIE CSCD 2006年第4期203-209,共7页
Beamlet sources have strong local and directional character and can easily accomplish local illumination and migration. Besides, they provide better migration results than conventional migration methods. We introduce ... Beamlet sources have strong local and directional character and can easily accomplish local illumination and migration. Besides, they provide better migration results than conventional migration methods. We introduce the basic principles of beamlet prestack depth migration that includes a windowed Fourier transform and frame theory. We explain the Gabor-Daubechies (G-D) frame based on a Gaussian function. Beamlet decomposition provides information on the local space and direction of wavefield. We synthesize the beamlet source and beamlet records in the wavelet domain using both rectangle and Gaussian windows and then extrapolate the synthesized data with a Fourier finite-difference operator. We test the method using the standard Marmousi model. By comparing and analyzing the migration results of single directional beamlet and beamlets with different windows and directions, we demonstrate the validity of the prestack depth migration with Gaussian beamlets method. 展开更多
关键词 beamlet prestack depth migration frame theory. Gaussian window function.
在线阅读 下载PDF
Study and application of PS-wave pre-stack migration in HTI media and an anisotropic correction method 被引量:1
9
作者 YanLi-Li Cheng Bing-Jie +3 位作者 Xu Tian-Ji Jiang Ying-Ying Ma Zhao-Jun and Tang Jian-Ming 《Applied Geophysics》 SCIE CSCD 2018年第1期57-68,148,共13页
Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse ef... Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse effects of S-wave splitting and to improve PS- wave imaging quality, we tested methods for pre-stack migration imaging and anisotropic correction of PS-wave data. We based this on the propagation rules of seismic waves in a horizontal transverse isotropy medium, which is a fractured medium model that reflects likely subsurface conditions in the field. We used the radial (R) and transverse (T) components of PS-wave data to separate the fast and slow S-wave components, after which their propagation moveout was effectively extracted. Meanwhile, corrections for the energies and propagation moveouts of the R and T components were implemented using mathematical rotation. The PS-wave imaging quality was distinctly improved, and we demonstrated the reliability of our methods through numerical simulations. Applying our methods to three-dimensional and three-component seismic field data from the Xinchang-Hexingchang region of the Western Sichuan Depression in China, we obtained high-quality seismic imaging with continuous reflection wave groups, distinct structural features, and specific stratigraphic contact relationships. This study provides an effective and reliable approach for data processing that will improve the exploration of complex, hidden lithologic gas reservoirs. 展开更多
关键词 HTI media PS-wave pre-stack time migration anisotropic correction Xinchang-Hexingchang region the Western Sichuan Depression
在线阅读 下载PDF
The Offset-Domain Prestack Depth Migration with Optimal Separable Approximation
10
作者 张致付 刘春园 +1 位作者 张春涛 孟小红 《Journal of China University of Geosciences》 SCIE CSCD 2007年第4期350-356,共7页
The offset-domain prestack depth migration with optimal separable approximation, based on the double square root equation, is used to image complex media with large and rapid velocity variations. The method downward c... The offset-domain prestack depth migration with optimal separable approximation, based on the double square root equation, is used to image complex media with large and rapid velocity variations. The method downward continues the source and the receiver wavefields simultaneously. The mixed domain algorithm with forward Fourier and inverse Fourier transform is used to construct the double square root equation wavefield extrapolation operator. This operator separates variables in the wave number domain and variables in the space domain. The phase operation is implemented in the wave number domain, whereas the time delay for lateral velocity variation is corrected in the space domain. The migration algorithm is efficient since the seismic data are not computed shot by shot. The data set test of the Marmousi model indicates that the offset-domain migration provides a satisfied seismic migration section on which complex geologic structures are imaged in media with large and rapid lateral velocity variations. 展开更多
关键词 double square root equation optimal separable approximation prestack depth migration.
在线阅读 下载PDF
Super-resolution least-squares prestack Kirchhoff depth migration using the L_0-norm
11
作者 Wu Shao-Jiang Wang Yi-Bo +1 位作者 Ma Yue and Chang Xu 《Applied Geophysics》 SCIE CSCD 2018年第1期69-77,148,149,共11页
Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground refl... Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging. 展开更多
关键词 SUPER-RESOLUTION LEAST-SQUARES Kirchhoff depth migration L0-norm REGULARIZATION
在线阅读 下载PDF
Traveltime tomography and prestack depth migration for vertical seismic profiling of an angle-domain walkaway on a complex surface
12
作者 Li Jian-Guo Cui Xiao-Jie +2 位作者 Huang Jian-Hua Zhang Xiao-Lu Li Yan-Peng 《Applied Geophysics》 SCIE CSCD 2019年第3期358-366,397,共10页
Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propos... Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propose combining traveltime tomography and prestack depth migration for VSP of an angle-domain walkaway,in a bid to establish accurate two-dimensional and three-dimensional(3 D)velocity models.First,residual curvature was defined to update velocity,and an accurate velocity field was established.To establish a high-precision velocity model,we deduced the relationship between the residual depth and traveltime of common imaging gathers(CIGs)in walkaway VSP.Solving renewal velocity using the least squares method,a four-parameter tomographic inversion equation was derived comprising formation dip angle,incidence angle,residual depth,and sensitivity matrix.In the angle domain,the reflected wave was divided into up-and down-transmitted waves and their traveltimes were calculated.The systematic cumulative method was employed in prestack depth migration of a complex surface.Through prestack depth migration,the offset-domain CIGs were obtained,and dip angle was established by defining the stack section horizon.Runge–Kutta ray tracing was employed to calculate the ray path from the reflection point to the detection point,to determine the incident angle,and to subsequently calculate the ray path from the reflection point to the irregular surface.The offset-domain residual depths were mapped to the angle domain,and a new tomographic equation was established and solved.Application in the double complex area of the Tarim Basin showed the four-parameter tomographic inversion equation derived in this paper to be both correct and practical and that the migration algorithm was able to adapt to the complex surface. 展开更多
关键词 Complex surface angle domain travel time tomography VSP one-way wave prestack depth migration
在线阅读 下载PDF
Prestack Depth Migration by a Parallel 3D PSPI
13
作者 Seonghyung Jang Taeyoun Kim 《International Journal of Geosciences》 2016年第7期904-914,共12页
Prestack depth migration for seismic reflection data is commonly used tool for imaging complex geological structures such as salt domes, faults, thrust belts, and stratigraphic structures. Phase shift plus interpolati... Prestack depth migration for seismic reflection data is commonly used tool for imaging complex geological structures such as salt domes, faults, thrust belts, and stratigraphic structures. Phase shift plus interpolation (PSPI) algorithm is a useful tool to directly solve a wave equation and the results have natural properties of the wave equation. Amplitude and phase characteristics, in particular, are better preserved. The PSPI algorithm is widely used in hydrocarbon exploration because of its simplicity, efficiency, and reduced efforts for computation. However, meaningful depth image of 3D subsurface requires parallel computing to handle heavy computing time and great amount of input data. We implemented a parallelized version of 3D PSPI for prestack depth migration using Open-Multi-Processing (Open MP) library. We verified its performance through applications to 3D SEG/EAGE salt model with a small scale Linux cluster. Phase-shift was performed in the vertical and horizontal directions, respectively, and then interpolated at each node. This gave a single image gather according to shot gather. After summation of each single image gather, we got a 3D stacked image in the depth domain. The numerical model example shows good agree- ment with the original geological model. 展开更多
关键词 3D PSPI PRESTACK migration depth migration
在线阅读 下载PDF
Preserved amplitude migration based on the one way wave equation in the angle domain 被引量:5
14
作者 叶月明 李振春 +2 位作者 徐秀刚 朱绪峰 仝兆岐 《Applied Geophysics》 SCIE CSCD 2009年第1期50-58,103,共10页
Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proporti... Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method. 展开更多
关键词 Preserved amplitude prestack depth migration angle domain one way wave equation imaging conditions
在线阅读 下载PDF
A Quadratic precision generalized nonlinear global optimization migration velocity inversion method
15
作者 Zhao Taiyin Hu Guangmin +1 位作者 He Zhenhua Huang Deji 《Applied Geophysics》 SCIE CSCD 2009年第2期138-149,共12页
An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear glob... An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear global optimization migration velocity inversion. First we discard the assumption that there is a linear relationship between residual depth and residual velocity and propose a velocity model correction equation with quadratic precision which enables the velocity model from each iteration to approach the real model as quickly as possible. Second, we use a generalized nonlinear inversion to get the global optimal velocity perturbation model to all traces. This method can expedite the convergence speed and also can decrease the probability of falling into a local minimum during inversion. The synthetic data and Mamlousi data examples show that our method has a higher precision and needs only a few iterations and consequently enhances the practicability and accuracy of migration velocity analysis (MVA) in complex areas. 展开更多
关键词 pre-stack depth migration migration velocity analysis generalized nonlinear inversion common imaging gather
在线阅读 下载PDF
The application of amplitude-preserved processing and migration for carbonate reservoir prediction in the Tarim Basin,China 被引量:6
16
作者 Sam Zandong Sun Yang Haijun +4 位作者 Zhang Yuanyin Han Jianfa WangDan Sun Wenbo Jiang Shan 《Petroleum Science》 SCIE CAS CSCD 2011年第4期406-414,共9页
Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be ap... Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be applied to the prediction of carbonate reservoirs.Amplitude-preserved seismic data processing is the foundation.In this paper,according to the feature of desert seismic data (including weak reflection,fast attenuation of high frequency components,strong coherent noises,low S/N and resolution),a set of amplitude-preserved processing techniques is applied and a reasonable processing flow is formed to obtain the high quality data.After implementing a set of pre-stack amplitude-preserved processing,we test and define the kernel parameters of amplitude-preserved Kirchhoff PSTM (pre-stack time migration) and subsequent gathers processing,in order to obtain the amplitude-preserved gathers used to the isotropic pre-stack inversion for the identification of caved reservoirs.The AVO characteristics of obtained gathers fit well with the synthetic gathers from logging data,and it proves that the processing above is amplitudepreserved.The azimuthal processing techniques,including azimuth division and binning enlargement,are implemented for amplitude-preserved azimuthal gathers with the uniform fold.They can be used in the anisotropic inversion to detect effective fractures.The processing techniques and flows are applied to the field seismic data,and are proved available for providing the amplitude-preserved gathers for carbonate reservoir prediction in the Tarim Basin. 展开更多
关键词 Amplitude-preserved processing amplitude-preserved pre-stack time migration azimuth carbonate reservoir Tarim Basin
原文传递
Impedance inversion of pre-stack seismic data in the depth domain 被引量:3
17
作者 Jiang Wei Chen Xue Hua +3 位作者 Zhang Jie Luo Xin Dan Zhi Wei and Xiao Wei 《Applied Geophysics》 SCIE CSCD 2019年第4期427-437,559,560,共13页
The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth... The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain. 展开更多
关键词 depth domain seismic wavelet synthetic seismogram pre-stack impedance inversion
在线阅读 下载PDF
An amplitude-preserved adaptive focused beam seismic migration method 被引量:6
18
作者 Ji-Dong Yang Jian-Ping Huang +1 位作者 Xin Wang Zhen-Chun Li 《Petroleum Science》 SCIE CAS CSCD 2015年第3期417-427,共11页
Gaussian beam migration (GBM) is an effec- tive and robust depth seismic imaging method, which overcomes the disadvantage of Kirchhoff migration in imaging multiple arrivals and has no steep-dip limitation of one-wa... Gaussian beam migration (GBM) is an effec- tive and robust depth seismic imaging method, which overcomes the disadvantage of Kirchhoff migration in imaging multiple arrivals and has no steep-dip limitation of one-way wave equation migration. However, its imaging quality depends on the initial beam parameters, which can make the beam width increase and wave-front spread with the propagation of the central ray, resulting in poor migration accuracy at depth, especially for exploration areas with complex geological structures. To address this problem, we present an adaptive focused beam method for shot-domain prestack depth migration. Using the infor- mation of the input smooth velocity field, we first derive an adaptive focused parameter, which makes a seismic beam focused along the whole central ray to enhance the wave- field construction accuracy in both the shallow and deep regions. Then we introduce this parameter into the GBM, which not only improves imaging quality of deep reflectors but also makes the shallow small-scale geological struc- tures well-defined. As well, using the amplitude-preserved extrapolation operator and deconvolution imaging condi- tion, the concept of amplitude-preserved imaging has been included in our method. Typical numerical examples and the field data processing results demonstrate the validity and adaptability of our method. 展开更多
关键词 Keywords Gaussian beam Adaptive focused beam Amplitude-preserved migration depth imaging
原文传递
Migration of Magnetotelluric Data in Two——Dimensional Model
19
作者 Wei Sheng Wang JiayingChina University of Geosciences , Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1991年第1期105-113,共9页
Since the wave equation of magnetoteiluric (MT)field is similar to the one of seismic , the migration techniques used in seismic can be applied to MT data . In this paper we make use of the principle of reflector mapp... Since the wave equation of magnetoteiluric (MT)field is similar to the one of seismic , the migration techniques used in seismic can be applied to MT data . In this paper we make use of the principle of reflector mapping (i. e. U/D imaging principle ) to image MT data . That is, the MT wavefield observed on the surface of the earth can be resolved into upgoing and downgoing waves , the waves are extrapolated downward by the phase - shift method or the phase - shift plus interpolation (PSPI )method . Conductivity interfaces of the medium could be found by using the time coincidence of the upgoing and downgoing waves . Theoretical calculations show that the migration technique of MT data presented here is very effective . It can not only enhance the lateral resolution of MT data , but also obtain the visual image of subsurface interfaces . As compared with the conventional 2 - D inversion , this procedure is more simple in calculation and can be easily put into practice on a personal computer and is able to obtain the MT depth section , which is similar to seismic section . 展开更多
关键词 migration imaging upgoing/downgoing waves the principle of reflec- tor mapping phase-shift method phase-shift plus interpolation method depth section.
在线阅读 下载PDF
Influences of coarse grid selection on Kirchhoff beam migration
20
作者 LI Jiabin SUN Hui +2 位作者 ZHANG Zhihou HAN Fuxing LIU Minchen 《Global Geology》 2019年第1期29-35,共7页
Kirchhoff beam migration is a beam migration method, which focuses on rapid imaging of geological structures. Although this imaging method ignores the amplitude information in the calculation process, it can calculate... Kirchhoff beam migration is a beam migration method, which focuses on rapid imaging of geological structures. Although this imaging method ignores the amplitude information in the calculation process, it can calculate multi-arrival traveltime. This migration method takes into account both imaging accuracy and computational efficiency. Kirchhoff beam migration employs coarse grid techniques in several key steps such as traveltime calculation, weight function calculation, and imaging calculation. The selection of the coarse mesh size has an important influence on the computational efficiency and imaging accuracy of the migration imaging method. This paper will analyze this influence and illustrate the analysis results by the Marmousi data sets. 展开更多
关键词 KIRCHHOFF BEAM migration prestack depth migration coarse GRID SELECTION BEAM propagator TRAVELTIME calculation
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部