A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehen...A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehensive two-dimensional(2 D) mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO_2 removal efficiency were systematically studied. The simulation results show that CO_2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range.展开更多
CO_(2) capture is an important carbon management route to mitigate the greenhouse gas emission in power sector.In recent years,China Huaneng Group(CHNG)has paid more attention on CO_(2)capture technology development a...CO_(2) capture is an important carbon management route to mitigate the greenhouse gas emission in power sector.In recent years,China Huaneng Group(CHNG)has paid more attention on CO_(2)capture technology development and launched a series of R&D and demonstration projects.In the area of pre-combustion CO_(2) capture technology,GreenGen project initiated by CHNG is the first integrated gasification combined cycle(IGCC)power plant in China.Located in Tianjin,GreenGen aims at the development,demonstration and promotion of a near-zero emissions power plant.An IGCC plant of 250 MW has successfully passed full-scale trial operation.In the next phase,a pre-combustion CO_(2) capture unit will be integrated into the system.Pre-combustion process based on coal chemical process has been developed with lower costs successfully.Regarding to post-combustion CO_(2) capture(PCC),in 2008,CHNG built a 3,000 tpa CO_(2) capture plant,which was the first CO_(2) capture demonstration plant in China.In 2009,CHNG launched a PCC project in Shanghai with a capture capacity of 120,000 tpa CO_(2).Recently,Huaneng Clean Energy Research Institute(CERI)and Powerspan formed a joint venture,Huaneng-CERI-Powerspan(HCP).HCP has completed the technology qualification program to supply carbon capture technology for the CO_(2)capture Mongstad project.Besides these activities mentioned above,feasibility studies and system design for large scale PCC system,have been undertaken by CERI and its partners from Australia,US and Europe.展开更多
Various computational methods were employed to investigate the zwitterion formation,a critical step for the reaction of monoethanolamine with CO2,in five solvents(water,monoethanolamine,propylamine,methanol and chloro...Various computational methods were employed to investigate the zwitterion formation,a critical step for the reaction of monoethanolamine with CO2,in five solvents(water,monoethanolamine,propylamine,methanol and chloroform)to probe the effect of hydrogen bond capacity of solvents on the reaction of amine with CO2 occurring in the amine-based CO2 capture process.The results indicate that the zwitterion can be formed in all considered solvents except chloroform.For two pairs of solvents(methanol and monoethanolamine,propylamine and chloroform)with similar dielectric constant but different hydrogen bond capacity,the solvents with higher hydrogen bond capacity(monoethanolamine and propylamine)facilitate the zwitterion formation.More importantly,kinetics parameters such as activation free energy for the zwitterion formation are more relevant to the hydrogen bond capacity than to dielectric constant of the considered solvents,clarifying the hydrogen bond capacity could be more important than dielectric constant in determining the kinetics of monoethanolamine with CO2.展开更多
Beyond conventional methods for CO2 capture and storage, a promising technology of sub-seabed CO2 storage in the form of gas hydrate has come into the limelight nowadays. In order to estimate CO2 storage capacity in t...Beyond conventional methods for CO2 capture and storage, a promising technology of sub-seabed CO2 storage in the form of gas hydrate has come into the limelight nowadays. In order to estimate CO2 storage capacity in the real sub-seabed sediments by gas hydrate, a large-scale geological model with the radius of 100 m and the thickness of 160 m was built in this study, and the processes of CO2 injection and CO2 hydrate formation in the sediments with two-phase flow were simulated numerically at three different injection rates of 10 ton/day, 50 ton/day, and 100 ton/day for an injection period of 150 days. Then, the evolutions of CO2 reaction, free CO2, and hydrate formation over time were analyzed quantitatively, and the spatial distributions of the physical properties in the sediments were presented to investigate the behaviors of CO2 hydrate formation in the sediments with two-phase flow. For CO2 storage capacity, a total amount of 15,000-ton CO2 can be stored safely in the sediments at the injection rate of 100 ton/day for 150 days, and a maximum amount of 36,500-ton CO2 could be stored in the sub-seabed sediments per year for a CO2 storage reservoir with the thickness of 100 m. For the practical scenario, an average value of 1 ton/day/m could be used to determine the actual injection rate based on the thickness of the real sub-seabed sediments.展开更多
Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-s...Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-scale CO_(2)capture applications,amino acid ionic liquids(AAILs)have garnered extensive interest in this field due to their adjustable structure,low volatility,high thermal stability,and significant absorption capacity.However,the number of comprehensive reviews recently published on the CO_(2)absorption by AAILs remains limited.In addition,researchers have differing opinions on the AAILs/CO_(2)reaction mechanisms.Therefore,this review provides a thorough overview of the reaction mechanisms and structure-activity relationships associated with AAILs for CO_(2)capture.Moreover,it outlines the research advancements in pure AAILs and their mixtures,including aqueous AAILs and AAIL-organic solvent mixtures.The effects of varying ionic structures and additives on the absorption properties of AAILs are examined in detail.In conclusion,although AAILs exhibit high CO_(2)absorption loading and possess numerous appealing characteristics,further research is essential to comprehensively evaluate their viability for large-scale CO_(2)capture from flue gas.展开更多
COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limit...COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limits the COabsorption application at elevated temperature, but also the determination of the operation condition of the COdesorption generally occurring at higher temperature. This work mainly reported COsolubilities in ILs at elevated temperatures and related properties were also provided. 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([CnMIm][TfN]) ILs were selected as physical absorbents for COcapture in this work due to their relative higher COabsorption capacities and good thermal stabilities. The long-term stability tests showed that [CnMIm][TfN] is thermally stable at 393.15 K for long time. COsolubilities in [CnMIm][TfN] were systematically determined at temperatures from 353.15 K to 393.15 K. It demonstrated that COsolubility obviously increases with the increase of pressure while slightly decreases with increase of temperature. As the length of alkyl chain on the cation increases, COsolubility in ILs increases. Additionally, the thermodynamic properties including the Gibbs free energy, enthalpy, and entropy of COwere also calculated.展开更多
Direct air capture (DAC) using amine-functionalized solid adsorbents holds promise for achieving negative carbon emissions. In this study, a series of additive-incorporated tetraethylenepentamine-functionalized SiO_(2...Direct air capture (DAC) using amine-functionalized solid adsorbents holds promise for achieving negative carbon emissions. In this study, a series of additive-incorporated tetraethylenepentamine-functionalized SiO_(2) adsorbents with varying tetraethylenepentamine and additive contents were prepared via a simple impregnation method, characterized by various techniques, and applied in the DAC process. The structure-performance relationship of these adsorbents in DAC was investigated, revealing that the quantity of active amine sites (or the tetraethylenepentamine content in the exposed layer), as determined by CO_(2)-TPD measurement, was an important factor affecting the adsorbent performance. This factor, which varied with the tetraethylenepentamine content, additive type, and additive content, showed a positive correlation with the CO_(2) adsorption capacity of the adsorbents. The optimal adsorbent, 40TEPA-10PEG/SiO_(2) containing 40 wt % tetraethylenepentamine and 10 wt % polyethylene glycol (Mn = 200), exhibited a stable CO_(2) capacity of 2.1 mmol·g^(-1) and amine efficiency of 0.22 over 20 adsorption–desorption cycles (adsorption at 400 ppm CO_(2)/N2 and 30℃ for 60 min, and desorption at pure N2 and 90℃ for 20 min). Moreover, even after deliberate accelerated oxidation treatment (pretreated in air at 100℃ for 10 h), the CO_(2) capacity of 40TEPA-10PEG/SiO_(2) remained at 2.0 mmol·g^(-1). The superior thermal and oxidative stability of 40TEPA-10PEG/SiO_(2) makes it a promising adsorbent for DAC applications.展开更多
Herein we report a systematical investigation on the promoting effect of the carbon chain length of the intercalated carboxylic anions on the COcapture performance of Mg-Al layer double hydroxides(LDHs).A series of ...Herein we report a systematical investigation on the promoting effect of the carbon chain length of the intercalated carboxylic anions on the COcapture performance of Mg-Al layer double hydroxides(LDHs).A series of organo-LDHs were successfully synthesized via co-precipitation and calcination-rehydration methods. All as-prepared samples were characterized by many techniques including XRD, ATR-FTIR, BET,and TGA. The XRD and ATR-FTIR studies indicated that organic anions were successfully intercalated into LDHs. The influence of some important parameters such as calcination temperature, adsorption temperature, and coating with(Li-Na-K)NOmolten salt was investigated. The results exhibited that when the number of carbon is greater than 10, the COcapture capacity steadily increased with the increase in carbon number. After coating with 55 mol%(Li-Na-K)NOmolten salt, the COuptake of LDH-C16 sample with high Mg/Al ratios can be increased up to 3.25 mmol/g. The COadsorption/desorption cycling stability was also studied using temperature swing adsorption, which showed a stable COcapture performance even after 22 cycles. Considering its high COcapture capacity and good cycling stability, this novel COadsorbent is very promising in the sorption-enhanced water gas shift(SEWGS) processes.展开更多
CO_(2)捕集是实现碳减排的重要技术之一。其中,化学吸收法是一种有效的、适用于低CO_(2)分压的CO_(2)捕集技术。开发出一种高效、低能耗、环保的吸收剂是该领域的研究难点和热点。离子液体(ILs)作为一类绿色溶剂,在CO_(2)捕集中具有结...CO_(2)捕集是实现碳减排的重要技术之一。其中,化学吸收法是一种有效的、适用于低CO_(2)分压的CO_(2)捕集技术。开发出一种高效、低能耗、环保的吸收剂是该领域的研究难点和热点。离子液体(ILs)作为一类绿色溶剂,在CO_(2)捕集中具有结构可调节、反应速率快、吸收量高等优势,但存在黏度大、价格昂贵等问题,本工作提出将超强碱离子液体1,8-二氮杂二环[5,4,0]十一碳-7-烯咪唑([HDBU][Im])与单乙醇胺(MEA)复配得到离子液体复配溶剂,来提高吸收剂的CO_(2)吸收量并降低吸收CO_(2)后溶剂的黏度。研究了离子液体浓度、吸收温度、CO_(2)分压等对离子液体复配溶剂捕集CO_(2)性能的影响,测定了离子液体复配溶剂在不同CO_(2)负荷下的密度和黏度等物性。结果表明,30wt%MEA+10wt%[HDBU][Im]具有较好的吸收能力,在40℃下,CO_(2)吸收量达到0.1453 g CO_(2)/g溶剂,且吸收CO_(2)前后溶剂的黏度分别为2.312和4.303 mPa·s,显著低于离子液体吸收剂,是一种具有潜力的CO_(2)捕集溶剂。展开更多
Parametric effect of moisture and influence of operating variables on the adsorption behaviour of polyaspartamide during CO2 capture was investigated in this study using experimental and modelling approach. Individual...Parametric effect of moisture and influence of operating variables on the adsorption behaviour of polyaspartamide during CO2 capture was investigated in this study using experimental and modelling approach. Individual effects of operating conditions (e.g. pressure, temperature and gas flow rates) as well as the effect of moisture on the adsorption capacity of polyaspartamide were methodically investigated using Dubinin-Raduskevich model. Results from the investigations reveal that the presence of moisture in the flue gas had an incremental effect on the adsorption capacity of polyaspartamide;thereby showcasing the potential of polyaspartamide as a suitable hydrophilic material for CO2 capture in power plants. In addition, pressure, temperature and gas flow rates at 200 kPa, 403 K, and 1.5 mL/s, respectively, sig? nificantly influenced the CO2 adsorption capacity of polyaspartamide. Physisorption and chemisorption both governed the adsorption process while equilibrium studies at different temperatures showed that Langmuir isotherm could adequately describe the adsorption behaviour of the material with best fit with R^2>0.95.展开更多
Chemical absorption using amine-based solvents have proven to be the most studied,as well as the most reliable and efficient technology for capturing carbon dioxide(CO_(2))from exhaust gas streams and synthesis gas in...Chemical absorption using amine-based solvents have proven to be the most studied,as well as the most reliable and efficient technology for capturing carbon dioxide(CO_(2))from exhaust gas streams and synthesis gas in all combustion and industrial processes.The application of single amine-based solvents especially the very reactive monoethanolamine(MEA)is associated with a parasitic energy demand for solvent regeneration.Since regeneration energy accounts for up to threeequarters of the plant operating cost,efforts in its reduction have prompted the idea of using blended amine solvents.This review paper highlights the success achieved in blending amine solvents and the recent and future technologies aimed at increasing the overall volumetric mass transfer coefficient,absorption rate,cyclic capacity and greatly minimizing both degradation and the energy for solvent regeneration.The importance of amine biodegradability(BOD)and low ecotoxicity as well as low amine volatility is also highlighted.Costs and energy penalty indices that influences the capital and operating costs of CO_(2) capture process was also highlighted.A new experimental method for simultaneously estimating amine cost,degradation rate,regeneration energy and reclaiming energy is also proposed in this review paper.展开更多
1.Introduction Man-made perturbations over emissions of greenhouse gas(GHG)bring tremendous negative impacts on the survival environment[1].CO_(2)accounts for~75%of global GHG impacts with others mainly composed of N_...1.Introduction Man-made perturbations over emissions of greenhouse gas(GHG)bring tremendous negative impacts on the survival environment[1].CO_(2)accounts for~75%of global GHG impacts with others mainly composed of N_(2)O,CH_(4),and small fluorinated gas molecules[2].Deployment of“negative emission”technologies via direct air capture(DAC)of CO_(2)by engineered chemical reactions represents one of the most promising and distinct pathways to limit and alleviate the global warming trend[3].展开更多
基金partly supported by the Research Council of Norway through CLIMIT program (MCIL-CO_2 project, 215732)
文摘A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehensive two-dimensional(2 D) mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO_2 removal efficiency were systematically studied. The simulation results show that CO_2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range.
文摘CO_(2) capture is an important carbon management route to mitigate the greenhouse gas emission in power sector.In recent years,China Huaneng Group(CHNG)has paid more attention on CO_(2)capture technology development and launched a series of R&D and demonstration projects.In the area of pre-combustion CO_(2) capture technology,GreenGen project initiated by CHNG is the first integrated gasification combined cycle(IGCC)power plant in China.Located in Tianjin,GreenGen aims at the development,demonstration and promotion of a near-zero emissions power plant.An IGCC plant of 250 MW has successfully passed full-scale trial operation.In the next phase,a pre-combustion CO_(2) capture unit will be integrated into the system.Pre-combustion process based on coal chemical process has been developed with lower costs successfully.Regarding to post-combustion CO_(2) capture(PCC),in 2008,CHNG built a 3,000 tpa CO_(2) capture plant,which was the first CO_(2) capture demonstration plant in China.In 2009,CHNG launched a PCC project in Shanghai with a capture capacity of 120,000 tpa CO_(2).Recently,Huaneng Clean Energy Research Institute(CERI)and Powerspan formed a joint venture,Huaneng-CERI-Powerspan(HCP).HCP has completed the technology qualification program to supply carbon capture technology for the CO_(2)capture Mongstad project.Besides these activities mentioned above,feasibility studies and system design for large scale PCC system,have been undertaken by CERI and its partners from Australia,US and Europe.
基金supported by the National Natural Science Foundation of China(Nos.21876024 and 21677028)the Major International(Regional)Joint Research Project(No.21661142001)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_13R05)the Programme of Introducing Talents of Discipline to Universities(No.B13012)Supercomputing Center of Dalian University of Technology
文摘Various computational methods were employed to investigate the zwitterion formation,a critical step for the reaction of monoethanolamine with CO2,in five solvents(water,monoethanolamine,propylamine,methanol and chloroform)to probe the effect of hydrogen bond capacity of solvents on the reaction of amine with CO2 occurring in the amine-based CO2 capture process.The results indicate that the zwitterion can be formed in all considered solvents except chloroform.For two pairs of solvents(methanol and monoethanolamine,propylamine and chloroform)with similar dielectric constant but different hydrogen bond capacity,the solvents with higher hydrogen bond capacity(monoethanolamine and propylamine)facilitate the zwitterion formation.More importantly,kinetics parameters such as activation free energy for the zwitterion formation are more relevant to the hydrogen bond capacity than to dielectric constant of the considered solvents,clarifying the hydrogen bond capacity could be more important than dielectric constant in determining the kinetics of monoethanolamine with CO2.
文摘Beyond conventional methods for CO2 capture and storage, a promising technology of sub-seabed CO2 storage in the form of gas hydrate has come into the limelight nowadays. In order to estimate CO2 storage capacity in the real sub-seabed sediments by gas hydrate, a large-scale geological model with the radius of 100 m and the thickness of 160 m was built in this study, and the processes of CO2 injection and CO2 hydrate formation in the sediments with two-phase flow were simulated numerically at three different injection rates of 10 ton/day, 50 ton/day, and 100 ton/day for an injection period of 150 days. Then, the evolutions of CO2 reaction, free CO2, and hydrate formation over time were analyzed quantitatively, and the spatial distributions of the physical properties in the sediments were presented to investigate the behaviors of CO2 hydrate formation in the sediments with two-phase flow. For CO2 storage capacity, a total amount of 15,000-ton CO2 can be stored safely in the sediments at the injection rate of 100 ton/day for 150 days, and a maximum amount of 36,500-ton CO2 could be stored in the sub-seabed sediments per year for a CO2 storage reservoir with the thickness of 100 m. For the practical scenario, an average value of 1 ton/day/m could be used to determine the actual injection rate based on the thickness of the real sub-seabed sediments.
基金supported by the Natural Science Foundation of Shanghai(Grant No.24ZR1426200)the support from the Key Program of the National Natural Science Foundation of China(Grant No.52236004)。
文摘Carbon dioxide(CO_(2))is the predominant greenhouse gas in the Earth’s atmosphere and plays a crucial role in global warming.Given the inherent limitations of monoethanolamine absorbents in current commercial large-scale CO_(2)capture applications,amino acid ionic liquids(AAILs)have garnered extensive interest in this field due to their adjustable structure,low volatility,high thermal stability,and significant absorption capacity.However,the number of comprehensive reviews recently published on the CO_(2)absorption by AAILs remains limited.In addition,researchers have differing opinions on the AAILs/CO_(2)reaction mechanisms.Therefore,this review provides a thorough overview of the reaction mechanisms and structure-activity relationships associated with AAILs for CO_(2)capture.Moreover,it outlines the research advancements in pure AAILs and their mixtures,including aqueous AAILs and AAIL-organic solvent mixtures.The effects of varying ionic structures and additives on the absorption properties of AAILs are examined in detail.In conclusion,although AAILs exhibit high CO_(2)absorption loading and possess numerous appealing characteristics,further research is essential to comprehensively evaluate their viability for large-scale CO_(2)capture from flue gas.
基金supported by the National Natural Science Foundation of China (21606233, 21436010)the National Natural Science Fund for Distinguished Young Scholars (21425625)the Research Council of Norway through the CLIMIT program (215732)
文摘COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limits the COabsorption application at elevated temperature, but also the determination of the operation condition of the COdesorption generally occurring at higher temperature. This work mainly reported COsolubilities in ILs at elevated temperatures and related properties were also provided. 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([CnMIm][TfN]) ILs were selected as physical absorbents for COcapture in this work due to their relative higher COabsorption capacities and good thermal stabilities. The long-term stability tests showed that [CnMIm][TfN] is thermally stable at 393.15 K for long time. COsolubilities in [CnMIm][TfN] were systematically determined at temperatures from 353.15 K to 393.15 K. It demonstrated that COsolubility obviously increases with the increase of pressure while slightly decreases with increase of temperature. As the length of alkyl chain on the cation increases, COsolubility in ILs increases. Additionally, the thermodynamic properties including the Gibbs free energy, enthalpy, and entropy of COwere also calculated.
基金Financial support from the National Natural Science Foundation of China(Grant No.22278143)is gratefully acknowledged.
文摘Direct air capture (DAC) using amine-functionalized solid adsorbents holds promise for achieving negative carbon emissions. In this study, a series of additive-incorporated tetraethylenepentamine-functionalized SiO_(2) adsorbents with varying tetraethylenepentamine and additive contents were prepared via a simple impregnation method, characterized by various techniques, and applied in the DAC process. The structure-performance relationship of these adsorbents in DAC was investigated, revealing that the quantity of active amine sites (or the tetraethylenepentamine content in the exposed layer), as determined by CO_(2)-TPD measurement, was an important factor affecting the adsorbent performance. This factor, which varied with the tetraethylenepentamine content, additive type, and additive content, showed a positive correlation with the CO_(2) adsorption capacity of the adsorbents. The optimal adsorbent, 40TEPA-10PEG/SiO_(2) containing 40 wt % tetraethylenepentamine and 10 wt % polyethylene glycol (Mn = 200), exhibited a stable CO_(2) capacity of 2.1 mmol·g^(-1) and amine efficiency of 0.22 over 20 adsorption–desorption cycles (adsorption at 400 ppm CO_(2)/N2 and 30℃ for 60 min, and desorption at pure N2 and 90℃ for 20 min). Moreover, even after deliberate accelerated oxidation treatment (pretreated in air at 100℃ for 10 h), the CO_(2) capacity of 40TEPA-10PEG/SiO_(2) remained at 2.0 mmol·g^(-1). The superior thermal and oxidative stability of 40TEPA-10PEG/SiO_(2) makes it a promising adsorbent for DAC applications.
基金supported by the Fundamental Research Funds for the Central Universities (2016ZCQ03)Beijing Excellent Young Scholar (2015000026833ZK11)+1 种基金the National Natural Science Foundation of China (51622801,51572029,and 51308045)the Xu Guangqi Grant
文摘Herein we report a systematical investigation on the promoting effect of the carbon chain length of the intercalated carboxylic anions on the COcapture performance of Mg-Al layer double hydroxides(LDHs).A series of organo-LDHs were successfully synthesized via co-precipitation and calcination-rehydration methods. All as-prepared samples were characterized by many techniques including XRD, ATR-FTIR, BET,and TGA. The XRD and ATR-FTIR studies indicated that organic anions were successfully intercalated into LDHs. The influence of some important parameters such as calcination temperature, adsorption temperature, and coating with(Li-Na-K)NOmolten salt was investigated. The results exhibited that when the number of carbon is greater than 10, the COcapture capacity steadily increased with the increase in carbon number. After coating with 55 mol%(Li-Na-K)NOmolten salt, the COuptake of LDH-C16 sample with high Mg/Al ratios can be increased up to 3.25 mmol/g. The COadsorption/desorption cycling stability was also studied using temperature swing adsorption, which showed a stable COcapture performance even after 22 cycles. Considering its high COcapture capacity and good cycling stability, this novel COadsorbent is very promising in the sorption-enhanced water gas shift(SEWGS) processes.
文摘CO_(2)捕集是实现碳减排的重要技术之一。其中,化学吸收法是一种有效的、适用于低CO_(2)分压的CO_(2)捕集技术。开发出一种高效、低能耗、环保的吸收剂是该领域的研究难点和热点。离子液体(ILs)作为一类绿色溶剂,在CO_(2)捕集中具有结构可调节、反应速率快、吸收量高等优势,但存在黏度大、价格昂贵等问题,本工作提出将超强碱离子液体1,8-二氮杂二环[5,4,0]十一碳-7-烯咪唑([HDBU][Im])与单乙醇胺(MEA)复配得到离子液体复配溶剂,来提高吸收剂的CO_(2)吸收量并降低吸收CO_(2)后溶剂的黏度。研究了离子液体浓度、吸收温度、CO_(2)分压等对离子液体复配溶剂捕集CO_(2)性能的影响,测定了离子液体复配溶剂在不同CO_(2)负荷下的密度和黏度等物性。结果表明,30wt%MEA+10wt%[HDBU][Im]具有较好的吸收能力,在40℃下,CO_(2)吸收量达到0.1453 g CO_(2)/g溶剂,且吸收CO_(2)前后溶剂的黏度分别为2.312和4.303 mPa·s,显著低于离子液体吸收剂,是一种具有潜力的CO_(2)捕集溶剂。
文摘Parametric effect of moisture and influence of operating variables on the adsorption behaviour of polyaspartamide during CO2 capture was investigated in this study using experimental and modelling approach. Individual effects of operating conditions (e.g. pressure, temperature and gas flow rates) as well as the effect of moisture on the adsorption capacity of polyaspartamide were methodically investigated using Dubinin-Raduskevich model. Results from the investigations reveal that the presence of moisture in the flue gas had an incremental effect on the adsorption capacity of polyaspartamide;thereby showcasing the potential of polyaspartamide as a suitable hydrophilic material for CO2 capture in power plants. In addition, pressure, temperature and gas flow rates at 200 kPa, 403 K, and 1.5 mL/s, respectively, sig? nificantly influenced the CO2 adsorption capacity of polyaspartamide. Physisorption and chemisorption both governed the adsorption process while equilibrium studies at different temperatures showed that Langmuir isotherm could adequately describe the adsorption behaviour of the material with best fit with R^2>0.95.
基金The financial supports from the Natural Sciences and Engineering Research Council of Canada(NSERC)to our CO_(2) Capture Research programs at the University of Regina,are gratefully acknowledgedIn addition,this publication was made possible,in parts,by NPRP grant#7-1154-2-433 from the Qatar Na tional Research Fund(a member of Qatar Foundation)+1 种基金The statements made herein are solely the responsibility of the au thorsThe authors also gratefully thank Clean Energy Technologies Research Institute(CETRI)of University of Regina-CANADA,Gas Processing Centre of Qatar University-QATAR,as well as the Petroleum and Petrochemical College of Chulalongkorn University-THAILAND,for their research facility supports.
文摘Chemical absorption using amine-based solvents have proven to be the most studied,as well as the most reliable and efficient technology for capturing carbon dioxide(CO_(2))from exhaust gas streams and synthesis gas in all combustion and industrial processes.The application of single amine-based solvents especially the very reactive monoethanolamine(MEA)is associated with a parasitic energy demand for solvent regeneration.Since regeneration energy accounts for up to threeequarters of the plant operating cost,efforts in its reduction have prompted the idea of using blended amine solvents.This review paper highlights the success achieved in blending amine solvents and the recent and future technologies aimed at increasing the overall volumetric mass transfer coefficient,absorption rate,cyclic capacity and greatly minimizing both degradation and the energy for solvent regeneration.The importance of amine biodegradability(BOD)and low ecotoxicity as well as low amine volatility is also highlighted.Costs and energy penalty indices that influences the capital and operating costs of CO_(2) capture process was also highlighted.A new experimental method for simultaneously estimating amine cost,degradation rate,regeneration energy and reclaiming energy is also proposed in this review paper.
文摘1.Introduction Man-made perturbations over emissions of greenhouse gas(GHG)bring tremendous negative impacts on the survival environment[1].CO_(2)accounts for~75%of global GHG impacts with others mainly composed of N_(2)O,CH_(4),and small fluorinated gas molecules[2].Deployment of“negative emission”technologies via direct air capture(DAC)of CO_(2)by engineered chemical reactions represents one of the most promising and distinct pathways to limit and alleviate the global warming trend[3].