ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lew...ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lewy (CFL) coefficient. Toro and Titarev employed CCFL=0.95for their experiments. Nonetheless, we noted that the experiments conducted in this study with CCFL=0.95produced solutions exhibiting spurious oscillations, particularly in the high-order ADER-WAF schemes. The homogeneous one-dimensional (1D) non-linear Shallow Water Equations (SWEs) are the subject of these experiments, specifically the solution of the Riemann Problem (RP) associated with the SWEs. The investigation was conducted on four test problems to evaluate the ADER-WAF schemes of second, third, fourth, and fifth order of accuracy. Each test problem constitutes a RP characterized by different wave patterns in its solution. This research has two primary objectives. We begin by illustrating the procedure for implementing the ADER-WAF schemes for the SWEs, providing the required relations. Afterward, following comprehensive testing, we present the range for the CFL coefficient for each test that yields solutions with diminished or eliminated spurious oscillations.展开更多
Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under...Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under three different greening schemes in typical areas of the Guangzhou University campus.The results indicate that the outdoor thermal environment is significantly influenced by the underlying surface materials and vegetation.The temperature of brick-paved surface is 0.9℃higher than that of natural soil surfaces under tree shade.Numerical simulations further confirm that increasing vegetation coverage effectively reduces outdoor air temperature.When the greening rate increases to 40%,the outdoor average temperature decreases by 0.7℃and relative humidity increases by approximately 4%,while wind speed remains minimal change.The cooling effect of vegetation is found to extend vertically to an altitude of 13 m.As the greening rate increases from 15%to 40%,the Mean Radiant Temperature(MRT)decreases from 50.6℃to 28.9℃,which is lower than the average ambient temperature,indicating improved thermal conditions.The Physiological Equivalent Temperature(PET)decreases from 40.2℃to 30.0℃,with the proportion of the areas classified as″very hot″reducing by 36.8%,significantly improving thermal comfort across most areas.Therefore,changing the ground material and greening landscape design can effectively alter the outdoor wind and thermal environment of the campus,thereby enhancing the thermal comfort for the campus community.展开更多
International carbon tax issues such as carbon leakage and carbon neutralization have become major topics of social concern.Based on the practical experience of carbon tax system in individual countries,this paper int...International carbon tax issues such as carbon leakage and carbon neutralization have become major topics of social concern.Based on the practical experience of carbon tax system in individual countries,this paper integrates the existing research of international carbon tax scholars to the classification and comparative analysis of international carbon tax schemes.Using a literature review approach,this dissertation mainly applies the method of qualitative analysis to explain and compare the contents of four international carbon tax options.Through the analysis and evaluation of individual countries’carbon tax practice,the two-country model is verified.Through the method of comparative analysis,the schemes are evaluated from four dimensions and an assessment is made.The difference of carbon tax among countries makes the internal policies of countries adjust accordingly with the changes of international environment,which promotes the gradual convergence of carbon tax schemes.The results intend to provide reference to further study the issue on international carbon tax.展开更多
Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,c...Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.展开更多
This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary ...This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary even order of accuracy.The main idea is to make use of the lower order compact schemes recursively,so as to obtain the high order compact schemes formally.Moreover,the schemes can be implemented efficiently by solving a series of tridiagonal systems recursively or the fast Fourier transform(FFT).With mathematical induction,the eigenvalues of the proposed differencing operators are shown to be bounded away from zero,which indicates the positive definiteness of the operators.To obtain numerical boundary conditions for the high order schemes,the simplified inverse Lax-Wendroff(SILW)procedure is adopted and the stability analysis is performed by the Godunov-Ryabenkii method and the eigenvalue spectrum visualization method.Various numerical experiments are provided to demonstrate the effectiveness and robustness of our algorithms.展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the m...In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope.展开更多
Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector ...Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes.展开更多
Slope limiters play an essential role in maintaining the non-oscillatory behavior of high-resolution methods for nonlinear conservation laws.The family of minmod limiters serves as the prototype example.Here,we revisi...Slope limiters play an essential role in maintaining the non-oscillatory behavior of high-resolution methods for nonlinear conservation laws.The family of minmod limiters serves as the prototype example.Here,we revisit the question of non-oscillatory behavior of high-resolution central schemes in terms of the slope limiter proposed by van Albada et al.(Astron Astrophys 108:76–84,1982).The van Albada(vA)limiter is smoother near extrema,and consequently,in many cases,it outperforms the results obtained using the standard minmod limiter.In particular,we prove that the vA limiter ensures the one-dimensional Total-Variation Diminishing(TVD)stability and demonstrate that it yields noticeable improvement in computation of one-and two-dimensional systems.展开更多
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g...In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.展开更多
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ...Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.展开更多
The solution of time-dependent hyperbolic conservation laws on cut cell meshes causes the small cell problem:standard schemes are not stable on the arbitrarily small cut cells if an explicit time stepping scheme is us...The solution of time-dependent hyperbolic conservation laws on cut cell meshes causes the small cell problem:standard schemes are not stable on the arbitrarily small cut cells if an explicit time stepping scheme is used and the time step size is chosen based on the size of the background cells.In May and Berger(J Sci Comput 71:919–943,2017),the mixed explicit-implicit approach in general and MUSCL-Trap(monotonic upwind scheme for conservation laws and trapezoidal scheme)in particular have been introduced to solve this problem by using implicit time stepping on the cut cells.Theoretical and numerical results have indicated that this might lead to a loss in accuracy when switching between the explicit and implicit time stepping.In this contribution,we examine this in more detail and will prove in one dimension that the specific combination MUSCL-Trap of an explicit second-order and an implicit second-order scheme results in a fully second-order mixed scheme.As this result is unlikely to hold in two dimensions,we also introduce two new versions of mixed explicit-implicit schemes based on exchanging the explicit scheme.We present numerical tests in two dimensions where we compare the new versions with the original MUSCL-Trap scheme.展开更多
In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interfac...In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interface capturing(THINC)technique.We employ boundary variation diminishing(BVD)reconstruction to enhance the scheme’s effectiveness in handling shocks.First,we prove that wavelet collocation upwind schemes based on interpolating wavelets can be reformulated into a conservative form within the framework of wavelet theory,forming the foundation of the proposed scheme.The new fourthorder accurate scheme possesses significantly better spectral resolution than the fifth-and even seventh-order WENO-Z(weighted essentially non-oscillatory)schemes over the entire wave-number range.Moreover,the inherent low-pass filtering property of the wavelet bases allows them to filter high-frequency numerical oscillations,endowing the wavelet upwind scheme with robustness and accuracy in solving problems under extreme conditions.Notably,due to the wavelet multiresolution approximation,the proposed scheme possesses a distinctive shape-preserving property absent in the WENO-Z schemes and the fifth-order schemes with BVD reconstruction based on polynomials.Furthermore,compared to the fifth-order scheme with BVD reconstruction based on polynomials—which is significantly superior to the WENO schemes—the proposed scheme further enhances the ability to capture discontinuities.展开更多
Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for du...Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.展开更多
In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-gue...In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.展开更多
The implementation of core competencies clarifies social talent needs and guides math classroom evaluation.Lower-grade primary students,highly malleable,need targeted teacher guidance.Teaching evaluation should meet t...The implementation of core competencies clarifies social talent needs and guides math classroom evaluation.Lower-grade primary students,highly malleable,need targeted teacher guidance.Teaching evaluation should meet the talent demands of the times,focusing on core literacy and essential character development.From this perspective,primary math teachers should optimize evaluation,build a diversified system,help students grow in math,find their learning position,and advance confidently.展开更多
Mesh reflector antennas are the mainstream of large space-borne antennas,and the stretching of the truss achieves their deployment.Currently,the truss is commonly designed to be a single degree of freedom(DOF)deployab...Mesh reflector antennas are the mainstream of large space-borne antennas,and the stretching of the truss achieves their deployment.Currently,the truss is commonly designed to be a single degree of freedom(DOF)deployable mechanism with synchronization constraints.However,each deployable unit’s drive distribution and resistance load are uneven,and the forced synchronization constraints lead to the flexible deformation of rods and difficulties in the deployment scheme design.This paper introduces an asynchronous deployment scheme with a multi-DOF closed-chain deployable truss.The DOF of the truss is calculated,and the kinematic and dynamic models are established,considering the truss’s and cable net’s real-time coupling.An integrated solving algorithm for implicit differential-algebraic equations is proposed to solve the dynamic models.A prototype of a six-unit antenna was fabricated,and the experiment was carried out.The dynamic performances in synchronous and asynchronous deployment schemes are analyzed,and the results show that the cable resistance and truss kinetic energy impact under the asynchronous deployment scheme are minor,and the antenna is more straightforward to deploy.The work provides a new asynchronous deployment scheme and a universal antenna modeling method for dynamic design and performance improvement.展开更多
Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fractur...Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.展开更多
The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control...The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control strategies,ensuring fault protection is paramount for the secure and steady operation of the traction power supply system(TPSS)integrated with RBEUS.This paper introduces an innovative protection scheme tailored to diverse RBEUS application scenarios.Firstly,fault categories are streamlined into three levels:system,equipment,and warning.Subsequently,a novel multi-port active power differential protection method,aligned with RBEUS operational principles,is crafted to serve as a comprehensive and sensitive main protection.Building upon this foundation,a hierarchical protection structure for RBEUS is established,addressing the intricacies and variations in fault types while boosting anti-disturbance capabilities under faulty conditions.Embracing the principle of railway-oriented safety,a collaborative RBEUS-TPSS protection scheme is put forth.Finally,through simulated scenarios encompassing various fault conditions,the proposed scheme’s feasibility and effectiveness are convincingly validated.展开更多
With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, i...With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM) and Transformer considering the time-series transaction information of smart contracts as well as the global information. Based on the verified smart contract addresses, account features, and code features are extracted to construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification problem. By comparing our method with the other four typical detection methods in the experiment, the LT-SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart contract detection.展开更多
文摘ADER-WAF methods were first introduced by researchers E.F. Toro and V.A. Titarev. The linear stability criterion for the model equation for the ADER-WAF schemes is CCFL≤1, where CCFLdenotes the Courant-Friedrichs-Lewy (CFL) coefficient. Toro and Titarev employed CCFL=0.95for their experiments. Nonetheless, we noted that the experiments conducted in this study with CCFL=0.95produced solutions exhibiting spurious oscillations, particularly in the high-order ADER-WAF schemes. The homogeneous one-dimensional (1D) non-linear Shallow Water Equations (SWEs) are the subject of these experiments, specifically the solution of the Riemann Problem (RP) associated with the SWEs. The investigation was conducted on four test problems to evaluate the ADER-WAF schemes of second, third, fourth, and fifth order of accuracy. Each test problem constitutes a RP characterized by different wave patterns in its solution. This research has two primary objectives. We begin by illustrating the procedure for implementing the ADER-WAF schemes for the SWEs, providing the required relations. Afterward, following comprehensive testing, we present the range for the CFL coefficient for each test that yields solutions with diminished or eliminated spurious oscillations.
基金Science and Technology Research Project of Guang-dong Meteorological Bureau(GRMC2022M21)Guangdong Basic and Applied Basic Research Foundation(2023A1515012240)Research Project of Guangzhou Meteor-ological Bureau(M202218)。
文摘Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under three different greening schemes in typical areas of the Guangzhou University campus.The results indicate that the outdoor thermal environment is significantly influenced by the underlying surface materials and vegetation.The temperature of brick-paved surface is 0.9℃higher than that of natural soil surfaces under tree shade.Numerical simulations further confirm that increasing vegetation coverage effectively reduces outdoor air temperature.When the greening rate increases to 40%,the outdoor average temperature decreases by 0.7℃and relative humidity increases by approximately 4%,while wind speed remains minimal change.The cooling effect of vegetation is found to extend vertically to an altitude of 13 m.As the greening rate increases from 15%to 40%,the Mean Radiant Temperature(MRT)decreases from 50.6℃to 28.9℃,which is lower than the average ambient temperature,indicating improved thermal conditions.The Physiological Equivalent Temperature(PET)decreases from 40.2℃to 30.0℃,with the proportion of the areas classified as″very hot″reducing by 36.8%,significantly improving thermal comfort across most areas.Therefore,changing the ground material and greening landscape design can effectively alter the outdoor wind and thermal environment of the campus,thereby enhancing the thermal comfort for the campus community.
文摘International carbon tax issues such as carbon leakage and carbon neutralization have become major topics of social concern.Based on the practical experience of carbon tax system in individual countries,this paper integrates the existing research of international carbon tax scholars to the classification and comparative analysis of international carbon tax schemes.Using a literature review approach,this dissertation mainly applies the method of qualitative analysis to explain and compare the contents of four international carbon tax options.Through the analysis and evaluation of individual countries’carbon tax practice,the two-country model is verified.Through the method of comparative analysis,the schemes are evaluated from four dimensions and an assessment is made.The difference of carbon tax among countries makes the internal policies of countries adjust accordingly with the changes of international environment,which promotes the gradual convergence of carbon tax schemes.The results intend to provide reference to further study the issue on international carbon tax.
基金supported by the National Natural Science Foundation of China(Grant No.42305169)the Basic Research Fund of CAMS(Grant No.2023Y001)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab)。
文摘Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.
基金supported by the NSFC grant 11801143J.Lu’s research is partially supported by the NSFC grant 11901213+3 种基金the National Key Research and Development Program of China grant 2021YFA1002900supported by the NSFC grant 11801140,12171177the Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology of China grant 2022HYTP0009the Program for Young Key Teacher of Henan Province of China grant 2021GGJS067.
文摘This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary even order of accuracy.The main idea is to make use of the lower order compact schemes recursively,so as to obtain the high order compact schemes formally.Moreover,the schemes can be implemented efficiently by solving a series of tridiagonal systems recursively or the fast Fourier transform(FFT).With mathematical induction,the eigenvalues of the proposed differencing operators are shown to be bounded away from zero,which indicates the positive definiteness of the operators.To obtain numerical boundary conditions for the high order schemes,the simplified inverse Lax-Wendroff(SILW)procedure is adopted and the stability analysis is performed by the Godunov-Ryabenkii method and the eigenvalue spectrum visualization method.Various numerical experiments are provided to demonstrate the effectiveness and robustness of our algorithms.
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
文摘In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope.
基金Supported by National Key R&D Program of China (Grant No.2023YFB3407103)National Natural Science Foundation of China (Grant Nos.52175242,52175027)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes.
基金Research was supported in part by the ONR Grant N00014-2112773.
文摘Slope limiters play an essential role in maintaining the non-oscillatory behavior of high-resolution methods for nonlinear conservation laws.The family of minmod limiters serves as the prototype example.Here,we revisit the question of non-oscillatory behavior of high-resolution central schemes in terms of the slope limiter proposed by van Albada et al.(Astron Astrophys 108:76–84,1982).The van Albada(vA)limiter is smoother near extrema,and consequently,in many cases,it outperforms the results obtained using the standard minmod limiter.In particular,we prove that the vA limiter ensures the one-dimensional Total-Variation Diminishing(TVD)stability and demonstrate that it yields noticeable improvement in computation of one-and two-dimensional systems.
基金supported by the Simons Foundation:Collaboration Grantssupported by the AFOSR grant FA9550-18-1-0383.
文摘In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.
文摘Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.
文摘The solution of time-dependent hyperbolic conservation laws on cut cell meshes causes the small cell problem:standard schemes are not stable on the arbitrarily small cut cells if an explicit time stepping scheme is used and the time step size is chosen based on the size of the background cells.In May and Berger(J Sci Comput 71:919–943,2017),the mixed explicit-implicit approach in general and MUSCL-Trap(monotonic upwind scheme for conservation laws and trapezoidal scheme)in particular have been introduced to solve this problem by using implicit time stepping on the cut cells.Theoretical and numerical results have indicated that this might lead to a loss in accuracy when switching between the explicit and implicit time stepping.In this contribution,we examine this in more detail and will prove in one dimension that the specific combination MUSCL-Trap of an explicit second-order and an implicit second-order scheme results in a fully second-order mixed scheme.As this result is unlikely to hold in two dimensions,we also introduce two new versions of mixed explicit-implicit schemes based on exchanging the explicit scheme.We present numerical tests in two dimensions where we compare the new versions with the original MUSCL-Trap scheme.
基金supported by the National Natural Science Foundation of China(Grant No.11925204).
文摘In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interface capturing(THINC)technique.We employ boundary variation diminishing(BVD)reconstruction to enhance the scheme’s effectiveness in handling shocks.First,we prove that wavelet collocation upwind schemes based on interpolating wavelets can be reformulated into a conservative form within the framework of wavelet theory,forming the foundation of the proposed scheme.The new fourthorder accurate scheme possesses significantly better spectral resolution than the fifth-and even seventh-order WENO-Z(weighted essentially non-oscillatory)schemes over the entire wave-number range.Moreover,the inherent low-pass filtering property of the wavelet bases allows them to filter high-frequency numerical oscillations,endowing the wavelet upwind scheme with robustness and accuracy in solving problems under extreme conditions.Notably,due to the wavelet multiresolution approximation,the proposed scheme possesses a distinctive shape-preserving property absent in the WENO-Z schemes and the fifth-order schemes with BVD reconstruction based on polynomials.Furthermore,compared to the fifth-order scheme with BVD reconstruction based on polynomials—which is significantly superior to the WENO schemes—the proposed scheme further enhances the ability to capture discontinuities.
基金sponsored by the National Natural Science Foundation of China(U2442601 and U2442218)the High Performance Computing Platform of Nanjing University of Information Science&Technology(NUIST)for their support of this work。
文摘Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.
基金supported by the National Natural Science Foundation of China(Grant Nos.41975090,U2242201,42075077)the Natural Science Foundation of Hunan Province,China(2022JJ20043)the Science and Technology Innovation Program of Hunan Province,China(2022RC1239)。
文摘In this study,the Betts-Miller-Janjic(BMJ)convective adjustment scheme in the Weather Research and Forecasting(WRF)model version 4.0 was used to investigate the effect of itsα-parameter,which influences the first-guess potential temperature reference profile on the Madden-Julian oscillation(MJO)propagation and structure.This study diagnosed the MJO active phase composites of the MJO-filtered outgoing longwave radiation(OLR)during the December-to-February(DJF)period of 2006-2016 over the Indian Ocean(IO),Maritime Continent(MC),and western Pacific(WP).The results show that the MJO-filtered OLR intensity,propagation pattern,and MJO classification(standing,jumping,and propagating clusters)are sensitive to theα-value,but the phase speeds of propagating MJOs are not.Overall,with an increasingα-value,the simulated MJO-filtered OLR intensity increases,and the simulated propagation pattern is improved.Results also show that the intensity and propagation pattern of an eastward-propagating MJO are associated with MJO circulation structures and thermodynamic structures.Asαincreases,the front Walker cell and the low-level easterly anomaly are enhanced,which premoistens the lower troposphere and triggers more active shallow and congestus clouds.The enhanced shallow and congestus convection preconditions the lower to middle troposphere,accelerating the transition from congestus to deep convection,thereby facilitating eastward propagation of the MJO.Therefore,the simulated MJO tends to transfer from standing to eastward propagating asαincreases.In summary,increasing theα-value is a possible way to improve the simulation of the structure and propagation of the MJO.
文摘The implementation of core competencies clarifies social talent needs and guides math classroom evaluation.Lower-grade primary students,highly malleable,need targeted teacher guidance.Teaching evaluation should meet the talent demands of the times,focusing on core literacy and essential character development.From this perspective,primary math teachers should optimize evaluation,build a diversified system,help students grow in math,find their learning position,and advance confidently.
基金supported by the National Key R&D Program of China(Grant No.2023YFB3407103)the National Natural Science Foundation of China(Grant Nos.52175242 and 52175027)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(Grant No.2022QNRC001).
文摘Mesh reflector antennas are the mainstream of large space-borne antennas,and the stretching of the truss achieves their deployment.Currently,the truss is commonly designed to be a single degree of freedom(DOF)deployable mechanism with synchronization constraints.However,each deployable unit’s drive distribution and resistance load are uneven,and the forced synchronization constraints lead to the flexible deformation of rods and difficulties in the deployment scheme design.This paper introduces an asynchronous deployment scheme with a multi-DOF closed-chain deployable truss.The DOF of the truss is calculated,and the kinematic and dynamic models are established,considering the truss’s and cable net’s real-time coupling.An integrated solving algorithm for implicit differential-algebraic equations is proposed to solve the dynamic models.A prototype of a six-unit antenna was fabricated,and the experiment was carried out.The dynamic performances in synchronous and asynchronous deployment schemes are analyzed,and the results show that the cable resistance and truss kinetic energy impact under the asynchronous deployment scheme are minor,and the antenna is more straightforward to deploy.The work provides a new asynchronous deployment scheme and a universal antenna modeling method for dynamic design and performance improvement.
基金the financial support from Intergovernmental International Science and Technology Innovation Cooperation Key Project(2022YFE0128400)National Natural Science Foundation of China(42307209)+2 种基金Shanghai Pujiang Program(2022PJD076)State Energy Center for Shale Oil Research and Development(33550000-22-ZC0613-0365)Natural Science Foundation of Qinghai Province(No.2024-ZJ-717).
文摘Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.
基金supported by the National Natural Science Foundation of China(Nos.52107126 and52077179)the Key Regional Innovation and Development Joint Fund Project(No.2023YFB2303901)the funding of Chengdu Guojia Electrical Engineering Co.,Ltd.(No.NEEC-2022-B11).
文摘The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control strategies,ensuring fault protection is paramount for the secure and steady operation of the traction power supply system(TPSS)integrated with RBEUS.This paper introduces an innovative protection scheme tailored to diverse RBEUS application scenarios.Firstly,fault categories are streamlined into three levels:system,equipment,and warning.Subsequently,a novel multi-port active power differential protection method,aligned with RBEUS operational principles,is crafted to serve as a comprehensive and sensitive main protection.Building upon this foundation,a hierarchical protection structure for RBEUS is established,addressing the intricacies and variations in fault types while boosting anti-disturbance capabilities under faulty conditions.Embracing the principle of railway-oriented safety,a collaborative RBEUS-TPSS protection scheme is put forth.Finally,through simulated scenarios encompassing various fault conditions,the proposed scheme’s feasibility and effectiveness are convincingly validated.
基金This work was granted by Qin Xin Talents Cultivation Program(No.QXTCP C202115)Beijing Information Science and Technology University+1 种基金the Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing Fund(No.GJJ-23)National Social Science Foundation,China(No.21BTQ079).
文摘With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM) and Transformer considering the time-series transaction information of smart contracts as well as the global information. Based on the verified smart contract addresses, account features, and code features are extracted to construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification problem. By comparing our method with the other four typical detection methods in the experiment, the LT-SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart contract detection.