A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of app...A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of appropriate amounts of Ce into the catalyst was beneficial to the formation of sole tetragonal ZrO2 and effectively prevented from the formation of monoclinic ZrO〉 and restrained the loss of sulfated species. XRD revealed the presence of tetragonal Ce0.16Zr0.84O2phase in the case of S2O8^2-/ZrO2-CeO2 calcined above 500 ℃. Catalytic activities of S2O8^2-/ZrO2-CeO2 for the esterification of lactic acid with n-butanol was studied. The results showed that the optimum conditions were as follows: calcination temperature of the catalyst 600 ℃, n(lactic acid):n(n-butyl alcohol)=1.0:3.0, w(S2O8^2-/ZrO2- CeO2)=12.0%, reaction temperature 145 ℃, and reaction time 2 h. The esterification efficiency of lactic acid was about 96.6%.展开更多
Effects of Zr/Ti molar ratio in SO42-/ZrO2-TiO2 solid acid catalyst calcined at different temperatures on its surface properties and catalytic activity were thoroughly investigated in this paper. The physicochemical c...Effects of Zr/Ti molar ratio in SO42-/ZrO2-TiO2 solid acid catalyst calcined at different temperatures on its surface properties and catalytic activity were thoroughly investigated in this paper. The physicochemical characteristics of prepared samples were determined by N2 adsorptiondesorption, XRD, NH3-TPD and XPS techniques, respectively. It was found that the crystallization temperature of the samples increased after the combination of ZrO2 and TiO2; and phase transformations from the anatase to the rutile of TiO2 species and the tetragonal to the monoclinic of ZrO2 species were effectively suppressed at higher temperature. The sample with a Zr/Ti molar ratio of 3/1 calcined at 450℃ showed the highest surface area and the most acid sites among all the tested samples. The acid site densities of samples were relatively closed to each other if they were calcined at the same temperature, however, decreased with the calcination temperature. The result indicates that the sulfur content in samples is a crucial factor to control the acid site density. Calcining the sample at 650℃ and higher temperatures resulted in a significant desorption of sulfate ion on the samples. The synthesized samples were evaluated as a potential catalyst for glucose conversion under the near-critical methanol conditions (200℃/4 MPa). The results suggested that the relatively weaker acid sites of the catalyst were more favorable for the accumulation of methyl glucosides, while the moderate acid sites were responsible for the formation of methyl levulinate. The catalytic activity for methyl levulinate production almost increases linearly with the catalyst acid site density. The catalyst deactivation is due to the loss of sulfate ion and the two catalysts with Zr/Ti molar ratios of 3/1 and 1/3 could effectively alleviate the deactivation caused by sulfate solution in the reaction medium and can be reused after calcination with the reuse rate of over 90% in terms of the methyl levulinate selectivity.展开更多
Super acid catalyst SO4^2-/ZrO2 was introduced into pure silicone MCM-41 via the impregnation method and the catalyst samples obtained at different temperatures were characterized by means of XRD, IR, and Py-IR techni...Super acid catalyst SO4^2-/ZrO2 was introduced into pure silicone MCM-41 via the impregnation method and the catalyst samples obtained at different temperatures were characterized by means of XRD, IR, and Py-IR techniques. The selectively catalytic gas-phase flow reactions of benzene with propene over the catalyst samples were carried out in a made-to-measure high-pressure flow reactor equipped with a thermostat and a condenser. Effect of the preparative condition on the catalytic synthesis of isopropyl benzene over the catalyst samples was tested. The results show that SO4^2-/ZrO2-MCM-41 ( SZM-41 ) can be used as a catalyst for the title reaction, in which there are a higher conversion (97%) for the propene and a higher selectivity(93% ) for the isopropyl benzene.展开更多
The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L...The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L, calcination temperature 500 °C, calcination time 3.0 h, and the concentration of phosphoric acid of 3.5 mol/L. Ce-nano PO_4^(3-)/ZrO_2 catalyst activities were correlated with the observed physico-chemical characteristics derived from scanning electron microscopy(SEM), FT-infrared(FT-IR), X-ray diffraction(XRD), thermogravimetric(TG) and Brunauer-Emmett-Teller(BET) analysis. The delayed crystallization of ZrO_2 made surface oxides have more defects which were beneficial to the adsorption of PO_4^(3-) by the concentration increment of Ce^(3+). The chemical composition of synthesized biodiesel was confirmed by gas chromatography(GC). The characteristics of Xanthoceras Sorbiflia Bunge oil were found within the optimal range in accordance with Chinese No. 0 diesel standard as a substitute diesel fuel.展开更多
Al2O3-ZrO2 with a high level of hardness and toughness is known as ceramic steel. Due to its unique properties it can be used as a reinforcement in fabrication of metal matrix composites. In this study, nanoparticles ...Al2O3-ZrO2 with a high level of hardness and toughness is known as ceramic steel. Due to its unique properties it can be used as a reinforcement in fabrication of metal matrix composites. In this study, nanoparticles of Al2O3-10% ZrO2 with an average size of 80 nm were used to fabricate Al matrix composites containing 0.5, 1, 1.5 and 2 wt.% of the reinforcement. The fabrication route was stir casting at 850?C. There is no report about usage of this reinforcement in fabrication of composites in the literature. The microstructures of the as-cast composites were studied by scanning electron microscope (SEM). Density measurement, hardness and tensile properties were carried out to identify the mechanical properties of the composites. The results revealed that with increasing the reinforcement content, density decreased while yield, ultimate tensile strength and compressive strength increased. Also, hardness increased by increasing the reinforcement content up to 1 wt.% Al2O3-10% ZrO2 but it decreased in the samples containing higher amounts of reinforcement.展开更多
A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures an...A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.展开更多
基金supported by the Science and Technique Foundation of Shaaxi Province of China (2008K07-32)the Foundation of Shaanxi Educa- tional Committee of China (08JK228)the Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘A novel solid superacid catalyst S2O8^2-/ZrO2-CeO2 was prepared by a coprecipitation method and characterized by means of XRD FTIR, BET, TEM and DSC/TG analysis methods. The results indicated that incorporation of appropriate amounts of Ce into the catalyst was beneficial to the formation of sole tetragonal ZrO2 and effectively prevented from the formation of monoclinic ZrO〉 and restrained the loss of sulfated species. XRD revealed the presence of tetragonal Ce0.16Zr0.84O2phase in the case of S2O8^2-/ZrO2-CeO2 calcined above 500 ℃. Catalytic activities of S2O8^2-/ZrO2-CeO2 for the esterification of lactic acid with n-butanol was studied. The results showed that the optimum conditions were as follows: calcination temperature of the catalyst 600 ℃, n(lactic acid):n(n-butyl alcohol)=1.0:3.0, w(S2O8^2-/ZrO2- CeO2)=12.0%, reaction temperature 145 ℃, and reaction time 2 h. The esterification efficiency of lactic acid was about 96.6%.
基金supported by the National Key Basic Research Program (2010CB732201) from the Ministry of Science and Technology of Chinathe Natural Science Foundation of China (U0733001, 50776035)the Basic Research Foundation from the Ministry of Education for Universities (2010121077)
文摘Effects of Zr/Ti molar ratio in SO42-/ZrO2-TiO2 solid acid catalyst calcined at different temperatures on its surface properties and catalytic activity were thoroughly investigated in this paper. The physicochemical characteristics of prepared samples were determined by N2 adsorptiondesorption, XRD, NH3-TPD and XPS techniques, respectively. It was found that the crystallization temperature of the samples increased after the combination of ZrO2 and TiO2; and phase transformations from the anatase to the rutile of TiO2 species and the tetragonal to the monoclinic of ZrO2 species were effectively suppressed at higher temperature. The sample with a Zr/Ti molar ratio of 3/1 calcined at 450℃ showed the highest surface area and the most acid sites among all the tested samples. The acid site densities of samples were relatively closed to each other if they were calcined at the same temperature, however, decreased with the calcination temperature. The result indicates that the sulfur content in samples is a crucial factor to control the acid site density. Calcining the sample at 650℃ and higher temperatures resulted in a significant desorption of sulfate ion on the samples. The synthesized samples were evaluated as a potential catalyst for glucose conversion under the near-critical methanol conditions (200℃/4 MPa). The results suggested that the relatively weaker acid sites of the catalyst were more favorable for the accumulation of methyl glucosides, while the moderate acid sites were responsible for the formation of methyl levulinate. The catalytic activity for methyl levulinate production almost increases linearly with the catalyst acid site density. The catalyst deactivation is due to the loss of sulfate ion and the two catalysts with Zr/Ti molar ratios of 3/1 and 1/3 could effectively alleviate the deactivation caused by sulfate solution in the reaction medium and can be reused after calcination with the reuse rate of over 90% in terms of the methyl levulinate selectivity.
文摘Super acid catalyst SO4^2-/ZrO2 was introduced into pure silicone MCM-41 via the impregnation method and the catalyst samples obtained at different temperatures were characterized by means of XRD, IR, and Py-IR techniques. The selectively catalytic gas-phase flow reactions of benzene with propene over the catalyst samples were carried out in a made-to-measure high-pressure flow reactor equipped with a thermostat and a condenser. Effect of the preparative condition on the catalytic synthesis of isopropyl benzene over the catalyst samples was tested. The results show that SO4^2-/ZrO2-MCM-41 ( SZM-41 ) can be used as a catalyst for the title reaction, in which there are a higher conversion (97%) for the propene and a higher selectivity(93% ) for the isopropyl benzene.
基金Supported by Key Laboratory of Bio-based Material Science&Technology(Northeast Forestry University)Ministry of Education(No.SWZCL2016-10)+2 种基金Natural Science Foundation of Inner Mongolia(No.2018BS03004)Talent Development Fund of Inner MongoliaNational Majority R&D Program of China(2017YFD06002025)
文摘The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L, calcination temperature 500 °C, calcination time 3.0 h, and the concentration of phosphoric acid of 3.5 mol/L. Ce-nano PO_4^(3-)/ZrO_2 catalyst activities were correlated with the observed physico-chemical characteristics derived from scanning electron microscopy(SEM), FT-infrared(FT-IR), X-ray diffraction(XRD), thermogravimetric(TG) and Brunauer-Emmett-Teller(BET) analysis. The delayed crystallization of ZrO_2 made surface oxides have more defects which were beneficial to the adsorption of PO_4^(3-) by the concentration increment of Ce^(3+). The chemical composition of synthesized biodiesel was confirmed by gas chromatography(GC). The characteristics of Xanthoceras Sorbiflia Bunge oil were found within the optimal range in accordance with Chinese No. 0 diesel standard as a substitute diesel fuel.
文摘Al2O3-ZrO2 with a high level of hardness and toughness is known as ceramic steel. Due to its unique properties it can be used as a reinforcement in fabrication of metal matrix composites. In this study, nanoparticles of Al2O3-10% ZrO2 with an average size of 80 nm were used to fabricate Al matrix composites containing 0.5, 1, 1.5 and 2 wt.% of the reinforcement. The fabrication route was stir casting at 850?C. There is no report about usage of this reinforcement in fabrication of composites in the literature. The microstructures of the as-cast composites were studied by scanning electron microscope (SEM). Density measurement, hardness and tensile properties were carried out to identify the mechanical properties of the composites. The results revealed that with increasing the reinforcement content, density decreased while yield, ultimate tensile strength and compressive strength increased. Also, hardness increased by increasing the reinforcement content up to 1 wt.% Al2O3-10% ZrO2 but it decreased in the samples containing higher amounts of reinforcement.
文摘A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.