By using sub-overquenching and annealing method which has a wide processing window, (Nd, Pr), ( Fe-CoZr)(94-x)B-6(x = 12, 10.5, 10, 9) bonded magnets were prepared and the effect of rare earths content on magnetic pro...By using sub-overquenching and annealing method which has a wide processing window, (Nd, Pr), ( Fe-CoZr)(94-x)B-6(x = 12, 10.5, 10, 9) bonded magnets were prepared and the effect of rare earths content on magnetic properties was investigated. Being spun at sub-ove.quenching speed the as-spun ribbons consist of amorphous phases mixed with fine crystallites. After crystallization under optimum annealing conditions and bonded with 3.25% (mass fraction) epoxy, the magnets obtained the optimum magnetic properties. The rare earths content directly determines the magnetic properties. With the reduction of rare earths content, B-r increases but H-ci and (BH)(max) decrease. x = 10 is the critical value for the magnetic proper-ties change. Below this value, Br increases slowly meanwhile H-ci and (BH)(max) decrease strongly because alloy contains extra fractions of soft magnetic phase which are not coupled with the hard magnetic phase.. This experimental result is consistent with the calculated results using the model of volume fraction of soft magnetic phase coupled completely suggested.展开更多
Bulk amorphous crystal and microcrystal for Pr60Cu(20-x)Ni10Al10Fex (x = 0, 8, 15, 20) with the diameter ofΦ2 ~ 6 mm were manufactured by electric arc smelting, high frequency heating and copper mold upper suction ca...Bulk amorphous crystal and microcrystal for Pr60Cu(20-x)Ni10Al10Fex (x = 0, 8, 15, 20) with the diameter ofΦ2 ~ 6 mm were manufactured by electric arc smelting, high frequency heating and copper mold upper suction casting, and its structure was analyzed by X-ray diffract meter. It showed soft magnetic characteristic gradually when Fe content in it was up to 8% . The material was applied to magnetic-electric sensor as key component, output signal of which was measured with the change of Fe content. It shows that the signal changes from weak to strong with the increase of Fe content and presents the largest peak value when Fe is replaced by Cu completely.展开更多
The optimum quenching rates and annealing conditions to prepare near stoichiometrical (Nd,Pr)(12)(FeCoZr)(82)B-6 bonded magnets were investigated by using sub-overquenching and post annealing method. The quenching rat...The optimum quenching rates and annealing conditions to prepare near stoichiometrical (Nd,Pr)(12)(FeCoZr)(82)B-6 bonded magnets were investigated by using sub-overquenching and post annealing method. The quenching rates, annealing temperatures, and annealing time directly influence the microstructure and magnetic properties of alloy ribbons. The optimum magnetic properties of bonded magnets are achieved by melt spinning at 24 m (.) s(-1) wheel surface speed, annealing at 655 degreesC for 10 min, and bonding with 3.25% (mass fraction) epoxy. The best magnetic properties of remanence B-r, intrinsic coercivity H-ci and maximum energy product (BH)(max) are 0.669 T, 811 kA (.) m(-1), and 75 kJ (.) m(-3), respectively.展开更多
For nanophase (Nd, Pr)FeB/α-Fe composite alloys were prepared by melt spinning, the appreciable addition of Zr reduces their average grain size. Observed by atom force microscopy (AFM), the average grain diameter of ...For nanophase (Nd, Pr)FeB/α-Fe composite alloys were prepared by melt spinning, the appreciable addition of Zr reduces their average grain size. Observed by atom force microscopy (AFM), the average grain diameter of crystallized ribbons on their free surface, reduces from 175 nm of Zr-free alloy to 79 nm of Zr-1at%, by about 55%. If the concentration exceeds 1%, the effects of Zr on fining grain size are evidently weakened. The average grain size on free surface of Zr-1.5at% is 72 nm. With the addition of 1at% Zn, the bonded magnets has the best combination of properties: B_r=0.675 T, H_(ci)=616 kA·m^(-1), (BH)_(max)=77 kJ·m^(-3). Below 1at%, the coarser grains lead to a lower magnetic property. Beyond 1at%, the layer of Zr-rich intergranular phase will thicken, which results in weakening of the exchange coupling among adjacent grains, and then causes degrading of magnetic properties of magnets.展开更多
文摘By using sub-overquenching and annealing method which has a wide processing window, (Nd, Pr), ( Fe-CoZr)(94-x)B-6(x = 12, 10.5, 10, 9) bonded magnets were prepared and the effect of rare earths content on magnetic properties was investigated. Being spun at sub-ove.quenching speed the as-spun ribbons consist of amorphous phases mixed with fine crystallites. After crystallization under optimum annealing conditions and bonded with 3.25% (mass fraction) epoxy, the magnets obtained the optimum magnetic properties. The rare earths content directly determines the magnetic properties. With the reduction of rare earths content, B-r increases but H-ci and (BH)(max) decrease. x = 10 is the critical value for the magnetic proper-ties change. Below this value, Br increases slowly meanwhile H-ci and (BH)(max) decrease strongly because alloy contains extra fractions of soft magnetic phase which are not coupled with the hard magnetic phase.. This experimental result is consistent with the calculated results using the model of volume fraction of soft magnetic phase coupled completely suggested.
文摘Bulk amorphous crystal and microcrystal for Pr60Cu(20-x)Ni10Al10Fex (x = 0, 8, 15, 20) with the diameter ofΦ2 ~ 6 mm were manufactured by electric arc smelting, high frequency heating and copper mold upper suction casting, and its structure was analyzed by X-ray diffract meter. It showed soft magnetic characteristic gradually when Fe content in it was up to 8% . The material was applied to magnetic-electric sensor as key component, output signal of which was measured with the change of Fe content. It shows that the signal changes from weak to strong with the increase of Fe content and presents the largest peak value when Fe is replaced by Cu completely.
文摘The optimum quenching rates and annealing conditions to prepare near stoichiometrical (Nd,Pr)(12)(FeCoZr)(82)B-6 bonded magnets were investigated by using sub-overquenching and post annealing method. The quenching rates, annealing temperatures, and annealing time directly influence the microstructure and magnetic properties of alloy ribbons. The optimum magnetic properties of bonded magnets are achieved by melt spinning at 24 m (.) s(-1) wheel surface speed, annealing at 655 degreesC for 10 min, and bonding with 3.25% (mass fraction) epoxy. The best magnetic properties of remanence B-r, intrinsic coercivity H-ci and maximum energy product (BH)(max) are 0.669 T, 811 kA (.) m(-1), and 75 kJ (.) m(-3), respectively.
文摘For nanophase (Nd, Pr)FeB/α-Fe composite alloys were prepared by melt spinning, the appreciable addition of Zr reduces their average grain size. Observed by atom force microscopy (AFM), the average grain diameter of crystallized ribbons on their free surface, reduces from 175 nm of Zr-free alloy to 79 nm of Zr-1at%, by about 55%. If the concentration exceeds 1%, the effects of Zr on fining grain size are evidently weakened. The average grain size on free surface of Zr-1.5at% is 72 nm. With the addition of 1at% Zn, the bonded magnets has the best combination of properties: B_r=0.675 T, H_(ci)=616 kA·m^(-1), (BH)_(max)=77 kJ·m^(-3). Below 1at%, the coarser grains lead to a lower magnetic property. Beyond 1at%, the layer of Zr-rich intergranular phase will thicken, which results in weakening of the exchange coupling among adjacent grains, and then causes degrading of magnetic properties of magnets.