This paper describes what is thought to be the first generation of a continuous wave deep ultraviolet laser at 275 nm by efficient frequency doubling of a blue-diode-pumped Pr:YLF laser at 550 nm.By employing a novel ...This paper describes what is thought to be the first generation of a continuous wave deep ultraviolet laser at 275 nm by efficient frequency doubling of a blue-diode-pumped Pr:YLF laser at 550 nm.By employing a novel fast-axis collimated blue semiconductor laser as the pump source,combined with a folded cavity and innovation coating technology,and utilizing a Brewster-cut BBO crystal for intracavity frequency doubling,TEM00 mode deep UV laser radiation at 275 nm with an output power of 351 mW is obtained.This marks the first report of achieving 275 nm laser generation based on Pr:LiYF4 to date.展开更多
In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method....In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method.Under radiation excitation,scintillation properties such as light yield,decay time,and afterglow level were measured and compared to non-co-doped LuYAG:Pr^(3+).The positive effect of Zr and Hf co-doping is to significantly shorten the scintillation time response.The negative effect is the decrease of scintillation yield and increase of afterglow.We propose that the positively charged defects induced by Zr/Hf co-doping are responsible for the spatial correlated traps around Pr centers causing the shortened scintillation decay via non-radiative recombination processes,and the deep traps as well for the prolonged afterglow.展开更多
文摘This paper describes what is thought to be the first generation of a continuous wave deep ultraviolet laser at 275 nm by efficient frequency doubling of a blue-diode-pumped Pr:YLF laser at 550 nm.By employing a novel fast-axis collimated blue semiconductor laser as the pump source,combined with a folded cavity and innovation coating technology,and utilizing a Brewster-cut BBO crystal for intracavity frequency doubling,TEM00 mode deep UV laser radiation at 275 nm with an output power of 351 mW is obtained.This marks the first report of achieving 275 nm laser generation based on Pr:LiYF4 to date.
基金supported by the National Key R&D Program of China(2022YFB3503900)National Natural Science Foundation of China(11975303,12211530561,12305211)+2 种基金Shanghai Municipal Natural Science Foundation(20ZR1473900,21TS1400100)CAS Cooperative Research Project(121631KYSB20210017)CAS Project for Young Scientist in Basic Research(YSBR-024)。
文摘In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method.Under radiation excitation,scintillation properties such as light yield,decay time,and afterglow level were measured and compared to non-co-doped LuYAG:Pr^(3+).The positive effect of Zr and Hf co-doping is to significantly shorten the scintillation time response.The negative effect is the decrease of scintillation yield and increase of afterglow.We propose that the positively charged defects induced by Zr/Hf co-doping are responsible for the spatial correlated traps around Pr centers causing the shortened scintillation decay via non-radiative recombination processes,and the deep traps as well for the prolonged afterglow.