Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent ...Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage.展开更多
Polymerizing the narrow bandgap small-molecule architecture with a conjugated linking unit(or called the polymerized small molecule acceptors(PSMAs))is a promising strategy to design polymer acceptors for efficient al...Polymerizing the narrow bandgap small-molecule architecture with a conjugated linking unit(or called the polymerized small molecule acceptors(PSMAs))is a promising strategy to design polymer acceptors for efficient all polymer solar cells(all-PSCs).Currently,the fused-ring-based small molecule acceptors(SMAs)are preferred monomers to design efficient PSMAs,leaving the challenge of reducing the materials cost.In this work,we firstly employ nonfused-core SMA with simple synthetic procedures to design PSMAs(namely PBTI-H,PBTI-F and PBTI-Cl)to address this issue.Relative to the fused-ring based counterparts,these three PSMAs exhibit much higher figure-of-merit value.Additionally,a power-conversion efficiency of 8.80%is achieved in the PBTI-Cl-based all-PSC.The results offer an attractive approach to design low-cost PSMAs for efficient all-PSCs.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 62204104, 42005138, 12274190, 12274189, 62275115)Shandong Province High Education Youth Innovation Team Program (Grant No. 2023KJ210)Science and Technology Program of Yantai (Grant No. 2023JCYJ047)。
文摘Due to advantages of high power-conversion efficiency(PCE), large power-to-weight ratio(PWR), low cost and solution processibility, flexible perovskite solar cells(f-PSCs) have attracted extensive attention in recent years. The PCE of f-PSCs has developed rapidly to over 25%, showing great application prospects in aerospace and wearable electronic devices. This review systematically sorts device structures and compositions of f-PSCs, summarizes various methods to improve its efficiency and stability recent years. In addition, the applications and potentials of f-PSCs in space vehicle and aircraft was discussed. At last, we prospect the key scientific and technological issues that need to be addressed for f-PSCs at current stage.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22022509,51873140 and 51820105003)Jiangsu Provincial Natural Science Foundation(No.BK20190095)+1 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.21KJA150006)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘Polymerizing the narrow bandgap small-molecule architecture with a conjugated linking unit(or called the polymerized small molecule acceptors(PSMAs))is a promising strategy to design polymer acceptors for efficient all polymer solar cells(all-PSCs).Currently,the fused-ring-based small molecule acceptors(SMAs)are preferred monomers to design efficient PSMAs,leaving the challenge of reducing the materials cost.In this work,we firstly employ nonfused-core SMA with simple synthetic procedures to design PSMAs(namely PBTI-H,PBTI-F and PBTI-Cl)to address this issue.Relative to the fused-ring based counterparts,these three PSMAs exhibit much higher figure-of-merit value.Additionally,a power-conversion efficiency of 8.80%is achieved in the PBTI-Cl-based all-PSC.The results offer an attractive approach to design low-cost PSMAs for efficient all-PSCs.