This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for man...This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for many series RLC-current chains based on their Norton's form companion models in the original networks,and then the precondition conjugate gradient based iterative method is used to solve the reduced networks,which are symmetric positive definite. The solutions of the original networks are then back solved from those of the reduced networks.Experimental results show that the complexities of reduced networks are typically significantly smaller than those of the original circuits, which makes the new algorithm extremely fast. For instance, power/ground networks with more than one million branches can be solved in a few minutes on modern Sun workstations.展开更多
A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete ...A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete Cholesky decomposition conjugate gradient method (ICCG) are the three main parts of our work.Users can choose nonlinear programming method or branch and bound algorithm to satisfy their different requirements of precision and speed.The experimental results prove that the algorithms can run very fast with lower wiring resources consumption.As a result,the CAD tool based on these algorithms is able to cope with large-scale circuits.展开更多
In order to provide some reference for the design of the power/ground system, a complicated power/ground system in time and frequency domains was analyzed, which is based on PEEC (Partial Element Equivalent Circuit). ...In order to provide some reference for the design of the power/ground system, a complicated power/ground system in time and frequency domains was analyzed, which is based on PEEC (Partial Element Equivalent Circuit). According to the actual requirements, characteristics of some common power/ground structures in time and frequency domains, such as SSN (Simultaneous Switching Noise), are obtained for the future research. The results show the first resonance point is changed with the structure of the power/ground networks.展开更多
Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization...Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization faces significant obstacles due to the technical challenges of long-distance microwave Wireless Power Transmission(WPT) from geostationary orbit. Even ground-based kilometer-scale WPT experiments remain difficult because of limited testing infrastructure, high costs, and strict electromagnetic wave regulations. Since the 1975 NASA-Raytheon experiment, which successfully recovered 30 kW of power over 1.55 km, there has been little progress in extending the transmission distance or increasing the retrieved power. This study proposes a cost-effective methodology for conducting long-range WPT experiments in constrained environments by utilizing existing infrastructure. A deep space antenna operating at 2.08 GHz with an output power of 2.3 kW and a gain of 55.3 dBi was used as the transmitter. Two test configurations were implemented: a 1.81 km ground-to-air test using an aerostat to elevate the receiver and a 1.82 km ground-to-ground test using a ladder truck positioned on a plateau. The rectenna consists of a lightweight 3×3 patch antenna array(0.9 m × 0.9 m), accompanied by a steering device and LED indicators to verify power reception. The aerostat-based test achieved a power density of 154.6 mW/m2, which corresponds to approximately 6.2% of the theoretical maximum. The performance gap is primarily attributed to near-field interference, detuning of the patch antenna, rectifier mismatch, and alignment issues. These limitations are expected to be mitigated through improved patch antenna fabrication, a transition from GaN to GaAs rectifiers optimized for lower input power, and the implementation of an automated alignment system. With these enhancements, the recovered power is expected to improve by approximately four to five times. The results demonstrate a practical and scalable framework for long-range WPT experiments under constrained conditions and provide key insights for advancing SBSP technology.展开更多
As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given m...As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given me a deeper appreciation of the importance of people-to-people exchanges between China and Africa.展开更多
Power augmented ram (PAR)engine is a popular equipment to reduce the requirement of power for takeoff and improve aerodynamic performance. To provide detailed insight into the aerodynamic characteristics of wing-in-...Power augmented ram (PAR)engine is a popular equipment to reduce the requirement of power for takeoff and improve aerodynamic performance. To provide detailed insight into the aerodynamic characteristics of wing-in-ground effect (WIG)craft with PAR engine, numerical simulations are carried out on WIG craft models in cruise. Simplified engine models are applied to the simulations. Two cruise modes for PAR engine are considered. The aerodynamic characteristics of the WIG craft and other features are studied. Comparisons with WIG craft model without PAR show that shutoff of PAR engine results in an increase in drag and less change in lift. Accordingly for the work of PAR engine, the air flow blown from the engine accelerates the flow around the upper surface and a high-speed attached flow near the trailing edge is recorded. With the schemed PAR flow, more suction force is realized and the flow features over the wing vary noticeably. It is also shown that the Coanda effect,provided with an attached flow, introduces an appropriate and practical flow mode for WIG craft with PAR engine in cruise. The results refresh our understanding on aerodynamic characteristics of WIG craft.展开更多
After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing proce...After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing process and trend of ground temperature around tower foundations are crucial for the stability of QTPT. We analyzed the change characteristics and tendencies of the ground temperature based on field monitoring data from 2010 to 2014. The results reveal that soil around the tower foundations froze and connected with the artificial permafrost induced during the construction of footings after the first freezing period, and the soil below the original permafrost table kept freezing in subsequent thawing periods. The ground temperature lowered to that of natural fields, fast or slowly for tower foundations with thermosyphons,while for tower foundations without thermosyphons, the increase in ground temperature resulted in higher temperature than that of natural fields. Also, the permafrost temperature and ice content are significant factors that influence the ground temperature around tower foundations. Specifically, the ground temperature around tower foundations in warm and ice-rich permafrost regions decreased slowly, while that in cold and ice poor permafrost regions cooled faster. Moreover, foundations types impacted the ground temperature, which consisted of different technical processes during construction and variant of tower footing structures. The revealed changing process and trend of the ground temperature is beneficial for evaluating the thermal regime evolution around tower foundations in the context of climate change.展开更多
To provide detailed insight into schemed power-augmented flow for wing-in-ground effect(WIG) craft in view of the concept of cruising with power assistance,this paper presents a numerical study.The engine installed ...To provide detailed insight into schemed power-augmented flow for wing-in-ground effect(WIG) craft in view of the concept of cruising with power assistance,this paper presents a numerical study.The engine installed before the wing for power-augmented flow is replaced by a simplified engine model in the simulations,and is considered to be equipped with a thrust vector nozzle.Flow features with different deflected nozzle angles are studied.Comparisons are made on aerodynamics to evaluate performance of power-augmented ram(PAR) modes in cruise.Considerable schemes of power-augmented flow in cruise are described.The air blown from the PAR engine accelerates the flow around wing and a high-speed attached flow near the trailing edge is recorded for certain deflected nozzle angles.This effect takes place and therefore the separation is prevented not only at the trailing edge but also on the whole upper side.The realization of suction varies with PAR modes.It is also found that scheme of blowing air under the wing for PAR engine is aerodynamically not efficient in cruise.The power-augmented flow is extremely complicated.The numerical results give clear depiction of the flow.Optimal scheme of power-augmented flow with respect to the craft in cruise depends on the specific engines and the flight regimes.展开更多
In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfe...In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfer power per meter in summer is 97.1% of the test data,and the average value accounts for 81.8%.The per meter heat power data through on-site thermal response test can provide references for designing engineering project and optimizing ground source heat pump system as these data do not vary greatly from the actual monitoring data.展开更多
In most earlier ferroresonance studies the traditional excitation characteristic of iron core, in which the traditional excitation characteristic contains harmonic voltages or currents, has been used as if it were mad...In most earlier ferroresonance studies the traditional excitation characteristic of iron core, in which the traditional excitation characteristic contains harmonic voltages or currents, has been used as if it were made up of pure fundamental voltage or current. However, this is not always true. In comparison with traditional excitation characteristics, this paper introduces the power frequency excitation characteristic of the iron core, which contains no harmonics. The power frequency excitation characteristic of iron core has been obtained by Elector Magnetic Transient Program, resulting in discrete voltage and current pairs. Extensive simulations are carried out to analyse the effect of power frequency excitation characteristic on potential transformer ferroresonance. A detailed analysis of simulation results demonstrates that with power frequency excitation characteristic of iron core inclusion at certain excitation voltage the ferroresonance may happen, conversely it may not happen with traditional excitation characteristic inclusion.展开更多
Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining a...Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining activities cause strong ground vibrations. Common practice in the power industry is to limit ground motion by specifying maximum Peak Particle Velocity. So far, there is a lack of industry-wide recognized guidelines on how ground vibration limits should be set for the transmission structures. In order to develop a defense strategy to protect power transmission lines against strong ground motions in mining areas, a systematic research work was conducted to establish strong ground vibration characteristics and to study impacts of ground excitations on transmission pole structures. Ground movements were recorded using geophones and wireless tri-axial sensing units. The process of generating ground motion response spectra via analyzing actual ground motion measurements is described in the paper. These spectra developed based on peak particle velocities were used as a basis for spectral analysis performed using validated Finite Element models to obtain structural displacements, reactions and stress states of the transmission pole structures in the mining sites. A quantitative ground motion limit was established by comparing structural responses with the corresponding design requirements.展开更多
This paper, the first in a series provides the background of the project, reports on the early phases of construction with the descriptions of the pre and post flooded conditions related to vegetation and land cover t...This paper, the first in a series provides the background of the project, reports on the early phases of construction with the descriptions of the pre and post flooded conditions related to vegetation and land cover types surrounding the reservoir. Currently there are plans to develop the so called “Lower Churchill Area” by establishing new power plants at Gull Island and at Muskrat Falls with associated reservoirs. These new plants would use the discharged water of the plant from Churchill Falls and the additional water collected from some of the Churchill River Basin. The information provided by these papers could have relevance to the environmental evaluation of these new developments. The Churchill Falls Hydro Project (called the “Upper Churchill Development”) in Labrador, Canada, was initiated in the late 1960s and the 5428-MW hydro generating plant constructed was then among the largest in the world. At that time, in general, not much attention was paid to the impact of such development on the flooding of vegetation especially forest stands. Both forested and un-forested terrestrial vegetation types were flooded (244 915 ha). Some islands were created and in addition portions of existing areas were flooded to form islands (74 075 ha) in the Main (Smallwood) Reservoir area. The flooded area of forest and un-forested land in the reservoir is 77% while the islands is 23 percent. The percentages of forested and un-forested areas lost to flooding are 64% and 36% respectively. The percent of commercial forests lost to flooding is approximately 1% and the non-commerci- al forests is 99% (with a total volume of approximately 10 million cubic meters of wood).展开更多
Combined with actual situation of Fengxian power Supply Company, the neutral grounding modes of Fengxian 35 kV and 10 kV power grid are studied in the paper. The different frequencies injected method is used to measur...Combined with actual situation of Fengxian power Supply Company, the neutral grounding modes of Fengxian 35 kV and 10 kV power grid are studied in the paper. The different frequencies injected method is used to measure the capacitive current of Fengxian 28 substations, and the neutral grounding modes of the 28 substations are determined based on the measured values of capacitive current.展开更多
The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent...The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent transportation systems,and military missions.As an information carrier of air platforms,the deployment strategy of unmanned aerial vehicles(UAVs)is essential for communication systems’performance.In this paper,we discuss a UAV broadcast coverage strategy that can maximize energy efficiency(EE)under terrestrial users’requirements.Due to the non-convexity of this issue,conventional approaches often solve with heuristics algorithms or alternate optimization.To this end,we propose an iterative algorithm by optimizing trajectory and power allocation jointly.Firstly,we discrete the UAV trajectory into several stop points and propose a user grouping strategy based on the traveling salesman problem(TSP)to acquire the number of stop points and the optimization range.Then,we use the Dinkelbach method to dispose of the fractional form and transform the original problem into an iteratively solvable convex optimization problem by variable substitution and Taylor approximation.Numerical results validate our proposed solution and outperform the benchmark schemes in EE and mission completion time.展开更多
This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence netwo...This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence network analysis of the -11 transformer, and concludes the scope of voltage sag and swell and the degree of power frequency overvoltage and their influencing factors in the 110 kV resistance grounding system. Accordingly this paper puts forward the resistance choosing principle: the resistance grounding coefficient must be equal to or greater than 10. So it can not only wipe out the voltage sag and voltage swell but also make sure the overvoltage is limited to electrical equipment allowing range. The method mentioned above is verified by simulation results of a 110 kV power system in ATP.展开更多
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network...As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.展开更多
The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding curren...The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.展开更多
We present an optically powered,intrinsically safe gas monitoring system to measure four essential environmental gases(CH_(4),CO_(2),CO and O_(2)),together with ambient temperature and pressure,for underground mines.T...We present an optically powered,intrinsically safe gas monitoring system to measure four essential environmental gases(CH_(4),CO_(2),CO and O_(2)),together with ambient temperature and pressure,for underground mines.The system is based on three key technologies developed at UNSW:(1)power-over-fbre(PoF)at 1550 nm using a single industry-standard,low-cost single-mode fbre(SMF)for both power delivery and information transmission,(2)liquid–crystal-based optical transducers for optical telemetry,and(3)ultra-low power consumption design of all electronics.Together,this approach allows each gas monitoring station to operate with less than 150 mW of optical power,meeting the intrinsic safety requirements specifed by the IEC60079-28 standard.A 2-month feld trial at BMA’s Broadmeadow underground mine proved the cabling compatibility to the mine’s existing optical network and the stability of the system performance.Compared with conventional electrically powered gas sensors,this technology bypasses the usual roadblocks of underground gas monitoring where electrical power is either unsafe or unavailable.Furthermore,using one fbre for both power delivery and communication enables longer distance coverage,reduces optical cabling and increases multiplexing possibilities and data throughput for better awareness of underground environment.展开更多
文摘This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for many series RLC-current chains based on their Norton's form companion models in the original networks,and then the precondition conjugate gradient based iterative method is used to solve the reduced networks,which are symmetric positive definite. The solutions of the original networks are then back solved from those of the reduced networks.Experimental results show that the complexities of reduced networks are typically significantly smaller than those of the original circuits, which makes the new algorithm extremely fast. For instance, power/ground networks with more than one million branches can be solved in a few minutes on modern Sun workstations.
文摘A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete Cholesky decomposition conjugate gradient method (ICCG) are the three main parts of our work.Users can choose nonlinear programming method or branch and bound algorithm to satisfy their different requirements of precision and speed.The experimental results prove that the algorithms can run very fast with lower wiring resources consumption.As a result,the CAD tool based on these algorithms is able to cope with large-scale circuits.
基金National Natural Science Foundation ofChina(No.60 2 710 3 0 )
文摘In order to provide some reference for the design of the power/ground system, a complicated power/ground system in time and frequency domains was analyzed, which is based on PEEC (Partial Element Equivalent Circuit). According to the actual requirements, characteristics of some common power/ground structures in time and frequency domains, such as SSN (Simultaneous Switching Noise), are obtained for the future research. The results show the first resonance point is changed with the structure of the power/ground networks.
文摘Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization faces significant obstacles due to the technical challenges of long-distance microwave Wireless Power Transmission(WPT) from geostationary orbit. Even ground-based kilometer-scale WPT experiments remain difficult because of limited testing infrastructure, high costs, and strict electromagnetic wave regulations. Since the 1975 NASA-Raytheon experiment, which successfully recovered 30 kW of power over 1.55 km, there has been little progress in extending the transmission distance or increasing the retrieved power. This study proposes a cost-effective methodology for conducting long-range WPT experiments in constrained environments by utilizing existing infrastructure. A deep space antenna operating at 2.08 GHz with an output power of 2.3 kW and a gain of 55.3 dBi was used as the transmitter. Two test configurations were implemented: a 1.81 km ground-to-air test using an aerostat to elevate the receiver and a 1.82 km ground-to-ground test using a ladder truck positioned on a plateau. The rectenna consists of a lightweight 3×3 patch antenna array(0.9 m × 0.9 m), accompanied by a steering device and LED indicators to verify power reception. The aerostat-based test achieved a power density of 154.6 mW/m2, which corresponds to approximately 6.2% of the theoretical maximum. The performance gap is primarily attributed to near-field interference, detuning of the patch antenna, rectifier mismatch, and alignment issues. These limitations are expected to be mitigated through improved patch antenna fabrication, a transition from GaN to GaAs rectifiers optimized for lower input power, and the implementation of an automated alignment system. With these enhancements, the recovered power is expected to improve by approximately four to five times. The results demonstrate a practical and scalable framework for long-range WPT experiments under constrained conditions and provide key insights for advancing SBSP technology.
文摘As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given me a deeper appreciation of the importance of people-to-people exchanges between China and Africa.
基金Program for Changjiang Scholars and Innovative Research Team in UniversityDoctoral Program Foundation of Institutions of Higher Education of China (20060247028)
文摘Power augmented ram (PAR)engine is a popular equipment to reduce the requirement of power for takeoff and improve aerodynamic performance. To provide detailed insight into the aerodynamic characteristics of wing-in-ground effect (WIG)craft with PAR engine, numerical simulations are carried out on WIG craft models in cruise. Simplified engine models are applied to the simulations. Two cruise modes for PAR engine are considered. The aerodynamic characteristics of the WIG craft and other features are studied. Comparisons with WIG craft model without PAR show that shutoff of PAR engine results in an increase in drag and less change in lift. Accordingly for the work of PAR engine, the air flow blown from the engine accelerates the flow around the upper surface and a high-speed attached flow near the trailing edge is recorded. With the schemed PAR flow, more suction force is realized and the flow features over the wing vary noticeably. It is also shown that the Coanda effect,provided with an attached flow, introduces an appropriate and practical flow mode for WIG craft with PAR engine in cruise. The results refresh our understanding on aerodynamic characteristics of WIG craft.
基金supported by National Natural Science Fund of China (Grant No. 41401088)State Grid Qinghai Electric Power Research Institute (SGQHDKYOSBJS201600077, SGQHDKYOSBJS 1700068)Funds of State Key Laboratory of Frozen Soil Engineering (Nos. SKLFSE-ZY-17, SKLFSEZT-32)
文摘After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing process and trend of ground temperature around tower foundations are crucial for the stability of QTPT. We analyzed the change characteristics and tendencies of the ground temperature based on field monitoring data from 2010 to 2014. The results reveal that soil around the tower foundations froze and connected with the artificial permafrost induced during the construction of footings after the first freezing period, and the soil below the original permafrost table kept freezing in subsequent thawing periods. The ground temperature lowered to that of natural fields, fast or slowly for tower foundations with thermosyphons,while for tower foundations without thermosyphons, the increase in ground temperature resulted in higher temperature than that of natural fields. Also, the permafrost temperature and ice content are significant factors that influence the ground temperature around tower foundations. Specifically, the ground temperature around tower foundations in warm and ice-rich permafrost regions decreased slowly, while that in cold and ice poor permafrost regions cooled faster. Moreover, foundations types impacted the ground temperature, which consisted of different technical processes during construction and variant of tower footing structures. The revealed changing process and trend of the ground temperature is beneficial for evaluating the thermal regime evolution around tower foundations in the context of climate change.
基金National Basic Research Program of China (2011CB711203)Program for Changjiang Scholars and Innovative Research Team in University
文摘To provide detailed insight into schemed power-augmented flow for wing-in-ground effect(WIG) craft in view of the concept of cruising with power assistance,this paper presents a numerical study.The engine installed before the wing for power-augmented flow is replaced by a simplified engine model in the simulations,and is considered to be equipped with a thrust vector nozzle.Flow features with different deflected nozzle angles are studied.Comparisons are made on aerodynamics to evaluate performance of power-augmented ram(PAR) modes in cruise.Considerable schemes of power-augmented flow in cruise are described.The air blown from the PAR engine accelerates the flow around wing and a high-speed attached flow near the trailing edge is recorded for certain deflected nozzle angles.This effect takes place and therefore the separation is prevented not only at the trailing edge but also on the whole upper side.The realization of suction varies with PAR modes.It is also found that scheme of blowing air under the wing for PAR engine is aerodynamically not efficient in cruise.The power-augmented flow is extremely complicated.The numerical results give clear depiction of the flow.Optimal scheme of power-augmented flow with respect to the craft in cruise depends on the specific engines and the flight regimes.
文摘In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfer power per meter in summer is 97.1% of the test data,and the average value accounts for 81.8%.The per meter heat power data through on-site thermal response test can provide references for designing engineering project and optimizing ground source heat pump system as these data do not vary greatly from the actual monitoring data.
文摘In most earlier ferroresonance studies the traditional excitation characteristic of iron core, in which the traditional excitation characteristic contains harmonic voltages or currents, has been used as if it were made up of pure fundamental voltage or current. However, this is not always true. In comparison with traditional excitation characteristics, this paper introduces the power frequency excitation characteristic of the iron core, which contains no harmonics. The power frequency excitation characteristic of iron core has been obtained by Elector Magnetic Transient Program, resulting in discrete voltage and current pairs. Extensive simulations are carried out to analyse the effect of power frequency excitation characteristic on potential transformer ferroresonance. A detailed analysis of simulation results demonstrates that with power frequency excitation characteristic of iron core inclusion at certain excitation voltage the ferroresonance may happen, conversely it may not happen with traditional excitation characteristic inclusion.
文摘Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining activities cause strong ground vibrations. Common practice in the power industry is to limit ground motion by specifying maximum Peak Particle Velocity. So far, there is a lack of industry-wide recognized guidelines on how ground vibration limits should be set for the transmission structures. In order to develop a defense strategy to protect power transmission lines against strong ground motions in mining areas, a systematic research work was conducted to establish strong ground vibration characteristics and to study impacts of ground excitations on transmission pole structures. Ground movements were recorded using geophones and wireless tri-axial sensing units. The process of generating ground motion response spectra via analyzing actual ground motion measurements is described in the paper. These spectra developed based on peak particle velocities were used as a basis for spectral analysis performed using validated Finite Element models to obtain structural displacements, reactions and stress states of the transmission pole structures in the mining sites. A quantitative ground motion limit was established by comparing structural responses with the corresponding design requirements.
文摘This paper, the first in a series provides the background of the project, reports on the early phases of construction with the descriptions of the pre and post flooded conditions related to vegetation and land cover types surrounding the reservoir. Currently there are plans to develop the so called “Lower Churchill Area” by establishing new power plants at Gull Island and at Muskrat Falls with associated reservoirs. These new plants would use the discharged water of the plant from Churchill Falls and the additional water collected from some of the Churchill River Basin. The information provided by these papers could have relevance to the environmental evaluation of these new developments. The Churchill Falls Hydro Project (called the “Upper Churchill Development”) in Labrador, Canada, was initiated in the late 1960s and the 5428-MW hydro generating plant constructed was then among the largest in the world. At that time, in general, not much attention was paid to the impact of such development on the flooding of vegetation especially forest stands. Both forested and un-forested terrestrial vegetation types were flooded (244 915 ha). Some islands were created and in addition portions of existing areas were flooded to form islands (74 075 ha) in the Main (Smallwood) Reservoir area. The flooded area of forest and un-forested land in the reservoir is 77% while the islands is 23 percent. The percentages of forested and un-forested areas lost to flooding are 64% and 36% respectively. The percent of commercial forests lost to flooding is approximately 1% and the non-commerci- al forests is 99% (with a total volume of approximately 10 million cubic meters of wood).
文摘Combined with actual situation of Fengxian power Supply Company, the neutral grounding modes of Fengxian 35 kV and 10 kV power grid are studied in the paper. The different frequencies injected method is used to measure the capacitive current of Fengxian 28 substations, and the neutral grounding modes of the 28 substations are determined based on the measured values of capacitive current.
基金co-supported by National Natural Science Foundation of China (No. 62171158)the Major Key Project of PCL (PCL2021A03-1)
文摘The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent transportation systems,and military missions.As an information carrier of air platforms,the deployment strategy of unmanned aerial vehicles(UAVs)is essential for communication systems’performance.In this paper,we discuss a UAV broadcast coverage strategy that can maximize energy efficiency(EE)under terrestrial users’requirements.Due to the non-convexity of this issue,conventional approaches often solve with heuristics algorithms or alternate optimization.To this end,we propose an iterative algorithm by optimizing trajectory and power allocation jointly.Firstly,we discrete the UAV trajectory into several stop points and propose a user grouping strategy based on the traveling salesman problem(TSP)to acquire the number of stop points and the optimization range.Then,we use the Dinkelbach method to dispose of the fractional form and transform the original problem into an iteratively solvable convex optimization problem by variable substitution and Taylor approximation.Numerical results validate our proposed solution and outperform the benchmark schemes in EE and mission completion time.
文摘This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence network analysis of the -11 transformer, and concludes the scope of voltage sag and swell and the degree of power frequency overvoltage and their influencing factors in the 110 kV resistance grounding system. Accordingly this paper puts forward the resistance choosing principle: the resistance grounding coefficient must be equal to or greater than 10. So it can not only wipe out the voltage sag and voltage swell but also make sure the overvoltage is limited to electrical equipment allowing range. The method mentioned above is verified by simulation results of a 110 kV power system in ATP.
基金supported by National Natural Science Foundation of China(No.62171158)the project“The Major Key Project of PCL(PCL2021A03-1)”from Peng Cheng Laboratorysupported by the Science and the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology(2018B030322004).
文摘As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.
基金The financial support from the National Natural Science Foundation of China (No. 51107143)
文摘The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.
基金support of the Australian Coal Industry’s Research Program(ACARP Grant C28010).
文摘We present an optically powered,intrinsically safe gas monitoring system to measure four essential environmental gases(CH_(4),CO_(2),CO and O_(2)),together with ambient temperature and pressure,for underground mines.The system is based on three key technologies developed at UNSW:(1)power-over-fbre(PoF)at 1550 nm using a single industry-standard,low-cost single-mode fbre(SMF)for both power delivery and information transmission,(2)liquid–crystal-based optical transducers for optical telemetry,and(3)ultra-low power consumption design of all electronics.Together,this approach allows each gas monitoring station to operate with less than 150 mW of optical power,meeting the intrinsic safety requirements specifed by the IEC60079-28 standard.A 2-month feld trial at BMA’s Broadmeadow underground mine proved the cabling compatibility to the mine’s existing optical network and the stability of the system performance.Compared with conventional electrically powered gas sensors,this technology bypasses the usual roadblocks of underground gas monitoring where electrical power is either unsafe or unavailable.Furthermore,using one fbre for both power delivery and communication enables longer distance coverage,reduces optical cabling and increases multiplexing possibilities and data throughput for better awareness of underground environment.