期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents 被引量:7
1
作者 牛东晓 王永利 马小勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期406-412,共7页
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput... According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting. 展开更多
关键词 power load forecasting support vector machine (SVM) Lyapunov exponent data mining embedding dimension feature classification
在线阅读 下载PDF
Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA 被引量:4
2
作者 Jiahao Wen Zhijian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期749-765,共17页
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne... Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model. 展开更多
关键词 Chaotic sparrow search optimization algorithm TPA BiLSTM short-term power load forecasting grey relational analysis
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
3
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention power load forecasting
在线阅读 下载PDF
A Weighted Combination Forecasting Model for Power Load Based on Forecasting Model Selection and Fuzzy Scale Joint Evaluation
4
作者 Bingbing Chen Zhengyi Zhu +1 位作者 Xuyan Wang Can Zhang 《Energy Engineering》 EI 2021年第5期1499-1514,共16页
To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided ... To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models. 展开更多
关键词 power load forecasting forecasting model selection fuzzy scale joint evaluation weighted combination forecasting
在线阅读 下载PDF
Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting 被引量:12
5
作者 Xia Hua Gang Zhang +1 位作者 Jiawei Yang Zhengyuan Li 《ZTE Communications》 2015年第3期2-5,共4页
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ... Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality. 展开更多
关键词 BP-ANN short-term load forecasting of power grid multiscale entropy correlation analysis
在线阅读 下载PDF
Short-Term Wind Power Prediction Method Based on Combination of Meteorological Features and CatBoost 被引量:1
6
作者 MOU Xingyu CHEN Hui +3 位作者 ZHANG Xinjing XU Xin YU Qingbo LI Yunfeng 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第2期169-176,共8页
As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.... As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.Therefore,a short-term wind power prediction method based on the combination of meteorological features and Cat Boost is presented.Firstly,morgan-stone algebras and sure independence screening(MS-SIS)method is designed to filter the meteorological features,and the influence of the meteorological features on the wind power is explored.Then,a sort enhancement algorithm is designed to increase the accuracy and calculation efficiency of the method and reduce the prediction risk of a single element.Finally,a prediction method based on Cat Boost network is constructed to further realize short-term wind power prediction.The National Renewable Energy Laboratory(NREL)dataset is used for experimental analysis.The results show that the short-term wind power prediction method based on the combination of meteorological features and Cat Boost not only improve the prediction accuracy of short-term wind power,but also have higher calculation efficiency. 展开更多
关键词 meteorological features short-term power load forecasting Cat Boost wind power
原文传递
Some Views about Recent Electric Power Supply Shortage in Shenzhen
7
作者 姚建锋 《Electricity》 2001年第1期34-36,共3页
Since the beginning of the year 2000, the power demands in Guangdong, Zhejiang provinces and Beijing Tianjin-Tangshan district have been increasing dramatically, power supply shortages have appeared again. This paper... Since the beginning of the year 2000, the power demands in Guangdong, Zhejiang provinces and Beijing Tianjin-Tangshan district have been increasing dramatically, power supply shortages have appeared again. This paper analyzes the reasons for the current power supply shortages in Shenzhen district and the problems existing presently in Shenzhen power system. It indicates that, to strengthen power demand forecast, to speed up power construction steps and with ’to develop power ahead of the rest’ as a fundamental target, are the precondition to the long term, steady development of power industry. 展开更多
关键词 power demand supply load forecast construction
在线阅读 下载PDF
Prospects of Shanghai City Network in 21~st Century 被引量:1
8
作者 王之佩 《Electricity》 2000年第4期14-20,共7页
According to the population, area and economy development of Shanghai City, this paper introduces the load forecast of the city and points out that the development of urban power network should adapt the development o... According to the population, area and economy development of Shanghai City, this paper introduces the load forecast of the city and points out that the development of urban power network should adapt the development of its economy. In this paper, the developing targets of Shanghai power network are also presented. 展开更多
关键词 urban power network city power network load forecast planning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部