期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On solving equations of algebraic sum of equal powers 被引量:1
1
作者 WANG Xinghua & YANG Shijun Department of Mathematics, Zhejiang University, Hangzhou 310028, China Department of Mathematics, Hangzhou Normal College, Hangzhou 310036, China 《Science China Mathematics》 SCIE 2006年第9期1153-1157,共5页
It is well known that a system of equations of sum of equal powers can be converted to an algebraic equation of higher degree via Newton's identities. This is the Viete-Newton theorem. This work reports the genera... It is well known that a system of equations of sum of equal powers can be converted to an algebraic equation of higher degree via Newton's identities. This is the Viete-Newton theorem. This work reports the generalizations of the Viete-Newton theorem to a system of equations of algebraic sum of equal powers. By exploiting some facts from algebra and combinatorics,it is shown that a system of equations of algebraic sum of equal powers can be converted in a closed form to two algebraic equations, whose degree sum equals the number of unknowns of the system of equations of algebraic sum of equal powers. 展开更多
关键词 algebraIC SUM of equal powers Newton's identities system of equations roots of a polynomial.
原文传递
每一个子空间都是子代数的代数 被引量:3
2
作者 吕海波 《东北林业大学学报》 CAS CSCD 北大核心 1991年第4期72-78,共7页
每一个子空间都是子代数的代数叫HB-代数。本文讨论了A是HB-代数当且仅当A是下列形式的代数:(一)零乘代数;(二)一维幂等代数Fe;(三)A=Fe+D是向量空间的直和,乘法表有两种,1) e^2=e,D^2=0,eD=0,(?)d∈D,de=d;2) e^2=e,D^2=0,De=0,(?)d∈D... 每一个子空间都是子代数的代数叫HB-代数。本文讨论了A是HB-代数当且仅当A是下列形式的代数:(一)零乘代数;(二)一维幂等代数Fe;(三)A=Fe+D是向量空间的直和,乘法表有两种,1) e^2=e,D^2=0,eD=0,(?)d∈D,de=d;2) e^2=e,D^2=0,De=0,(?)d∈D,ed=d;(四)B=sum from i(?)I+Fe_i,是向量空间的直和,乘法表有两种,1) (?)k,l∈I,e_k·e_l=e_k·2) (?)k,l∈I,e_ke_l=e_l;(五) A=B+D是向量空间的直和,A的乘法表有两种,D^2=0,1) B的乘法表为e_ke_l=e_k时,A的乘法表为e_iD=0,de_i=d,(?)i∈I,(?)d∈D;2) 当B的乘法表为e_ke_l=e_l时,A的乘法表是De_i=0,e_id=d,(?)i∈I,(?)d∈D。 展开更多
关键词 子空间 幂零元 幂等元 HB-代数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部