This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a n...This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%.展开更多
This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy dema...This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy demands,and the adoption of smart grid technologies,power systems are undergoing a rapid transformation,making the need for efficient,reliable,and sustainable distribution networks increasingly critical.In this paper,the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms.Among these advanced search algorithms,the Bonobo Optimizer(BO)has demonstrated superior performance in handling the complexities of unbalanced power distribution network optimization.The study is structured around four distinct scenarios:(Ⅰ)improving mean voltage profile and minimizing active power loss,(Ⅱ)minimizing Voltage Unbalance Index(VUI)and Current Unbalance Index(CUI),(Ⅲ)optimizing key reliability indices using both Line Oriented Reliability Index(LORI)and Customer Oriented Reliability Index(CORI)approaches,and(Ⅳ)employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power loss,average CUI,and System Average Interruption Duration Index(SAIDI).The study aims to contribute to the development of more efficient,reliable,and sustainable energy systems by addressing voltage profiles,power losses,reduction of imbalance,and the enhancement of reliability together.展开更多
As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft ele...As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid...In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.展开更多
This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused b...This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused by the neutral conductor theft. Simulations are made by the software lnterplan and show that the absence of neutral conductor at specific sections of power distribution lines may increase the neutral-to-ground voltages, which compromises the system's safety. The solution developed keeps the technical performance of the power distribution system at satisfactory levels, regarding the voltage profile, or, at least, close to the level before the neutral conductor's theft.展开更多
Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of dat...Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.展开更多
The study aims to address the challenge of dynamic assessment in power systems by proposing a design scheme for an intelligent adaptive power distribution system based on runtime verification.The system architecture i...The study aims to address the challenge of dynamic assessment in power systems by proposing a design scheme for an intelligent adaptive power distribution system based on runtime verification.The system architecture is built upon cloud-edge-end collaboration,enabling comprehensive monitoring and precise management of the power grid through coordinated efforts across different levels.Specif-ically,the study employs the adaptive observer approach,allowing dynamic adjustments to observers to reflect updates in requirements and ensure system reliability.This method covers both structural and parametric adjustments to specifications,including updating time protection conditions,updating events,and adding or removing responses.The results demonstrate that with the implementation of adaptive observers,the system becomes more flexible in responding to changes,significantly enhancing its level of efficiency.By employing dynamically changing verification specifications,the system achieves real-time and flexible verification.This research provides technical support for the safe,efficient,and reliable operation of electrical power distribution systems.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss r...This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.展开更多
We introduce a new generalization of the exponentiated power Lindley distribution,called the exponentiated power Lindley power series(EPLPS)distribution.The new distribution arises on a latent complementary risks scen...We introduce a new generalization of the exponentiated power Lindley distribution,called the exponentiated power Lindley power series(EPLPS)distribution.The new distribution arises on a latent complementary risks scenario,in which the lifetime associated with a particular risk is not observable;rather,we observe only the maximum lifetime value among all risks.The distribution exhibits decreasing,increasing,unimodal and bathtub shaped hazard rate functions,depending on its parameters.Several properties of the EPLPS distribution are investigated.Moreover,we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix.Finally,applications to three real data sets show the flexibility and potentiality of the EPLPS distribution.展开更多
The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.H...The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security.展开更多
The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environm...The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environment pro-tection. Integrating charging facilities, especially highpower chargers in fast charging stations, into power distribution systems remarkably alters the traditional load flow pattern, and thus imposes great challenges on the operation of distribution network in which controllable resources are rare. On the other hand, provided with appropriate incentives, the energy storage capability of electric vehicle offers a unique opportunity to facilitate the integration of distributed wind and solar power generation into power distribution system. The above trends call for thorough investigation and research on the interdependence between transportation system and power distribution system. This paper conducts a comprehensive survey on this line of research. The basic models of transportation system and power distribution system are introduced,especially the user equilibrium model, which describes the vehicular flow on each road segment and is not familiar to the readers in power system community. The modelling of interdependence across the two systems is highlighted.Taking into account such interdependence, applications ranging from long-term planning to short-term operation are reviewed with emphasis on comparing the description of traffic-power interdependence. Finally, an outlook of prospective directions and key technologies in future research is summarized.展开更多
After a major outage,mobile emergency resources(MERs)can be dispatched via the transportation system(TS)for service restoration to critical loads in the power distribution system(PDS).In this case study,the efficiency...After a major outage,mobile emergency resources(MERs)can be dispatched via the transportation system(TS)for service restoration to critical loads in the power distribution system(PDS).In this case study,the efficiency of service restoration in the PDS is associated with the traffic efficiency of the TS,and vice versa,because the PDS and TS are mutually coupled through traffic lights and MERs.This paper proposes a service restoration method considering interdependency between the PDS and TS,which is formulated as a mixed-integer linear program(MILP).The objective includes maximizing the efficiency of both PDS restoration and TS.By solving the MILP,the dynamic load restoration and MER dispatch strategies can be obtained.For the PDS,the availability of MERs,including mobile sources and repair crews,relates to their dispatch in the TS,and their relationship is formulated as mathematical models.For the TS,the dynamic traffic flow is modeled using the cell transmission model and the effect of traffic lights is considered.Case studies validate the effectiveness of the proposed method.展开更多
The increased deployment of electricity-based hydrogen production strengthens the coupling of power distribution system(PDS)and hydrogen energy system(HES).Considering that power to hydrogen(PtH)has great potential to...The increased deployment of electricity-based hydrogen production strengthens the coupling of power distribution system(PDS)and hydrogen energy system(HES).Considering that power to hydrogen(PtH)has great potential to facilitate the usage of renewable energy sources(RESs),the coordination of PDS and HES is important for planning purposes under high RES penetration.To this end,this paper proposes a multi-stage co-planning model for the PDS and HES.For the PDS,investment decisions on network assets and RES are optimized to supply the growing electric load and PtHs.For the HES,capacities of PtHs and hydrogen storages(HSs)are optimally determined to satisfy hydrogen load considering the hydrogen production,tube trailer transportation,and storage constraints.The overall planning problem is formulated as a multistage stochastic optimization model,in which the investment decisions are sequentially made as the uncertainties of electric and hydrogen load growth states are revealed gradually over periods.Case studies validate that the proposed co-planning model can reduce the total planning cost,promote RES consumption,and obtain more flexible decisions under long-term load growth uncertainties.展开更多
Reliable planning and operation of power distribution systems are of great significance. In this paper, the impactincrement based state enumeration(IIBSE) method is modified to adapt to the features of distribution sy...Reliable planning and operation of power distribution systems are of great significance. In this paper, the impactincrement based state enumeration(IIBSE) method is modified to adapt to the features of distribution systems. With the proposed method, the expectation, probabilistic, and duration reliability indices can be accurately obtained with a lower enumerated order of contingency states. In addition, the time-consuming optimal power flow(OPF) calculation can be replaced by a simple matrix operation for both independent and radial series failure states. Therefore, the accuracy and efficiency of the assessment process are improved comprehensively. The case of RBTS bus 6 system and IEEE 123 node test feeder system are utilized to test the performance of the modified IIBSE. The results show the superiority of the proposed method over Monte Carlo(MC) sampling and state enumeration(SE) methods in distribution systems.展开更多
Overhead electrical power distribution systems(PDS)are very susceptible to extreme wind hazards.Power outages can cause catastrophic consequences,including economic losses,loss of critical services,and disruption to d...Overhead electrical power distribution systems(PDS)are very susceptible to extreme wind hazards.Power outages can cause catastrophic consequences,including economic losses,loss of critical services,and disruption to daily life.Therefore,it is very important to model the resilience of PDS against extreme winds to support disaster planning.While several frameworks currently exist to assess the resilience of PDS subjected to extreme winds,these frameworks do not systematically consider the tree-failure risk.In other words,there is no integrated framework that can simultaneously consider tree failures,PDS component failures induced by falling trees,resilience assessment,and evaluation of resilience enhancement with vegetation management.Therefore,this study proposed an integrated simulation framework to model the resilience of PDS against extreme winds,which includes tree fragility modeling,PDS fragility modeling,PDS component failure estimation,system performance evaluation,system restoration modeling,and resilience enhancement evaluation.The framework is demonstrated with a power distribution network in Oklahoma.The results show that the estimated system resilience will reduce if tree failures are considered.Crown thinning can effectively enhance the system’s resilience,but the effectiveness is affected by both wind speed and direction.展开更多
Fire is one of the most common accidents in daily life. In the process of fire accident prevention, monitoring and management, attention should be paid not only to the timeliness of automatic fire alarm equipment, but...Fire is one of the most common accidents in daily life. In the process of fire accident prevention, monitoring and management, attention should be paid not only to the timeliness of automatic fire alarm equipment, but also to the danger of fire caused by building power distribution facilities. Therefore, in the process of design and construction of building electrical systems, We should not only pay attention to the design and installation of the automatic fire alarm system, but also pay attention to the fire protection power distribution system, so that the building electrical system can give full play to its functions, improve the utilization rate of building electrical facilities, and enable the building electrical system to play a good role in the process of fire accident prevention and alarm. This paper will focus on the topic of fire protection power distribution system design and automatic fire alarm system design in the building electrical system.展开更多
In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expan...In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.展开更多
The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arr...The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arranging the arc current intensities of every shot with a decay rank, the distributions of the arc current intensity correspond to the power laws, and the distribution obtained in the condition with the cryo-pump corresponds to the double Pareto distribution. Using the similar study method, the distributions of the arc duration are close to the power laws too. These power law distributions are formed rather naturally instead of being the results of purposeful seeking.展开更多
基金supported in part by the European Regional Development Fund under Grant KK.01.1.1.01.0009(DATACROSS).
文摘This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy demands,and the adoption of smart grid technologies,power systems are undergoing a rapid transformation,making the need for efficient,reliable,and sustainable distribution networks increasingly critical.In this paper,the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms.Among these advanced search algorithms,the Bonobo Optimizer(BO)has demonstrated superior performance in handling the complexities of unbalanced power distribution network optimization.The study is structured around four distinct scenarios:(Ⅰ)improving mean voltage profile and minimizing active power loss,(Ⅱ)minimizing Voltage Unbalance Index(VUI)and Current Unbalance Index(CUI),(Ⅲ)optimizing key reliability indices using both Line Oriented Reliability Index(LORI)and Customer Oriented Reliability Index(CORI)approaches,and(Ⅳ)employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power loss,average CUI,and System Average Interruption Duration Index(SAIDI).The study aims to contribute to the development of more efficient,reliable,and sustainable energy systems by addressing voltage profiles,power losses,reduction of imbalance,and the enhancement of reliability together.
文摘As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
文摘In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.
文摘This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused by the neutral conductor theft. Simulations are made by the software lnterplan and show that the absence of neutral conductor at specific sections of power distribution lines may increase the neutral-to-ground voltages, which compromises the system's safety. The solution developed keeps the technical performance of the power distribution system at satisfactory levels, regarding the voltage profile, or, at least, close to the level before the neutral conductor's theft.
基金supported by the National Key R&D Program of China(2020YFB0905900).
文摘Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.
基金supported by the China Electric Power ResearchInstitute and Electric Power Research Institute State Grid AnhuiElectric Power Co.,Ltd.,China(5400-202355201A-1-1-ZN).
文摘The study aims to address the challenge of dynamic assessment in power systems by proposing a design scheme for an intelligent adaptive power distribution system based on runtime verification.The system architecture is built upon cloud-edge-end collaboration,enabling comprehensive monitoring and precise management of the power grid through coordinated efforts across different levels.Specif-ically,the study employs the adaptive observer approach,allowing dynamic adjustments to observers to reflect updates in requirements and ensure system reliability.This method covers both structural and parametric adjustments to specifications,including updating time protection conditions,updating events,and adding or removing responses.The results demonstrate that with the implementation of adaptive observers,the system becomes more flexible in responding to changes,significantly enhancing its level of efficiency.By employing dynamically changing verification specifications,the system achieves real-time and flexible verification.This research provides technical support for the safe,efficient,and reliable operation of electrical power distribution systems.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.
文摘We introduce a new generalization of the exponentiated power Lindley distribution,called the exponentiated power Lindley power series(EPLPS)distribution.The new distribution arises on a latent complementary risks scenario,in which the lifetime associated with a particular risk is not observable;rather,we observe only the maximum lifetime value among all risks.The distribution exhibits decreasing,increasing,unimodal and bathtub shaped hazard rate functions,depending on its parameters.Several properties of the EPLPS distribution are investigated.Moreover,we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix.Finally,applications to three real data sets show the flexibility and potentiality of the EPLPS distribution.
基金supported by the Science and Technology Project of State Grid Corporation of China under Grant Number 52094021N010(5400-202199534A-0-5-ZN).
文摘The intelligent operation management of distribution services is crucial for the stability of power systems.Integrating the large language model(LLM)with 6G edge intelligence provides customized management solutions.However,the adverse effects of false data injection(FDI)attacks on the performance of LLMs cannot be overlooked.Therefore,we propose an FDI attack detection and LLM-assisted resource allocation algorithm for 6G edge intelligenceempowered distribution power grids.First,we formulate a resource allocation optimization problem.The objective is to minimize the weighted sum of the global loss function and total LLM fine-tuning delay under constraints of long-term privacy entropy and energy consumption.Then,we decouple it based on virtual queues.We utilize an LLM-assisted deep Q network(DQN)to learn the resource allocation strategy and design an FDI attack detection mechanism to ensure that fine-tuning remains on the correct path.Simulations demonstrate that the proposed algorithm has excellent performance in convergence,delay,and security.
基金support by the Young Elite Scientists Program of CSEE (No. JLB-2018-95)the National Natural Science Foundation of China (No. 51621065, No. U1766203)+1 种基金the support by FEDER funds through COMPETE 2020by Portuguese funds through FCT, under SAICT-PAC/0004/2015 (No. POCI-01-0145-FEDER-016434), 02/SAICT/2017 (No. POCI-01-0145-FEDER-029803) and UID/EEA/50014/2019 (No. POCI-01-0145-FEDER-006961)
文摘The rapidly increasing penetration of electric vehicles(EVs) in modern metropolises has been witnessed during the past decade, inspired by financial subsidies as well as public awareness of climate change and environment pro-tection. Integrating charging facilities, especially highpower chargers in fast charging stations, into power distribution systems remarkably alters the traditional load flow pattern, and thus imposes great challenges on the operation of distribution network in which controllable resources are rare. On the other hand, provided with appropriate incentives, the energy storage capability of electric vehicle offers a unique opportunity to facilitate the integration of distributed wind and solar power generation into power distribution system. The above trends call for thorough investigation and research on the interdependence between transportation system and power distribution system. This paper conducts a comprehensive survey on this line of research. The basic models of transportation system and power distribution system are introduced,especially the user equilibrium model, which describes the vehicular flow on each road segment and is not familiar to the readers in power system community. The modelling of interdependence across the two systems is highlighted.Taking into account such interdependence, applications ranging from long-term planning to short-term operation are reviewed with emphasis on comparing the description of traffic-power interdependence. Finally, an outlook of prospective directions and key technologies in future research is summarized.
基金This work was supported in part by Fundamental Funds for the Central University under Grant No.2018RC018the National Natural Science Foundation of China under Grant No.51807004the project of State Grid Shanghai Electrical Power Research Institute(B30940190000).
文摘After a major outage,mobile emergency resources(MERs)can be dispatched via the transportation system(TS)for service restoration to critical loads in the power distribution system(PDS).In this case study,the efficiency of service restoration in the PDS is associated with the traffic efficiency of the TS,and vice versa,because the PDS and TS are mutually coupled through traffic lights and MERs.This paper proposes a service restoration method considering interdependency between the PDS and TS,which is formulated as a mixed-integer linear program(MILP).The objective includes maximizing the efficiency of both PDS restoration and TS.By solving the MILP,the dynamic load restoration and MER dispatch strategies can be obtained.For the PDS,the availability of MERs,including mobile sources and repair crews,relates to their dispatch in the TS,and their relationship is formulated as mathematical models.For the TS,the dynamic traffic flow is modeled using the cell transmission model and the effect of traffic lights is considered.Case studies validate the effectiveness of the proposed method.
基金supported in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0258)in part by the National Natural Science Foundation of China(No.52177077)。
文摘The increased deployment of electricity-based hydrogen production strengthens the coupling of power distribution system(PDS)and hydrogen energy system(HES).Considering that power to hydrogen(PtH)has great potential to facilitate the usage of renewable energy sources(RESs),the coordination of PDS and HES is important for planning purposes under high RES penetration.To this end,this paper proposes a multi-stage co-planning model for the PDS and HES.For the PDS,investment decisions on network assets and RES are optimized to supply the growing electric load and PtHs.For the HES,capacities of PtHs and hydrogen storages(HSs)are optimally determined to satisfy hydrogen load considering the hydrogen production,tube trailer transportation,and storage constraints.The overall planning problem is formulated as a multistage stochastic optimization model,in which the investment decisions are sequentially made as the uncertainties of electric and hydrogen load growth states are revealed gradually over periods.Case studies validate that the proposed co-planning model can reduce the total planning cost,promote RES consumption,and obtain more flexible decisions under long-term load growth uncertainties.
基金supported in part by the National Natural Science Foundation of China (No.52077150)the National Key Research and Development Program of China (No.2019YFE0118000)。
文摘Reliable planning and operation of power distribution systems are of great significance. In this paper, the impactincrement based state enumeration(IIBSE) method is modified to adapt to the features of distribution systems. With the proposed method, the expectation, probabilistic, and duration reliability indices can be accurately obtained with a lower enumerated order of contingency states. In addition, the time-consuming optimal power flow(OPF) calculation can be replaced by a simple matrix operation for both independent and radial series failure states. Therefore, the accuracy and efficiency of the assessment process are improved comprehensively. The case of RBTS bus 6 system and IEEE 123 node test feeder system are utilized to test the performance of the modified IIBSE. The results show the superiority of the proposed method over Monte Carlo(MC) sampling and state enumeration(SE) methods in distribution systems.
基金supported by the National Science Foundation under Grant No.OIA-1946093。
文摘Overhead electrical power distribution systems(PDS)are very susceptible to extreme wind hazards.Power outages can cause catastrophic consequences,including economic losses,loss of critical services,and disruption to daily life.Therefore,it is very important to model the resilience of PDS against extreme winds to support disaster planning.While several frameworks currently exist to assess the resilience of PDS subjected to extreme winds,these frameworks do not systematically consider the tree-failure risk.In other words,there is no integrated framework that can simultaneously consider tree failures,PDS component failures induced by falling trees,resilience assessment,and evaluation of resilience enhancement with vegetation management.Therefore,this study proposed an integrated simulation framework to model the resilience of PDS against extreme winds,which includes tree fragility modeling,PDS fragility modeling,PDS component failure estimation,system performance evaluation,system restoration modeling,and resilience enhancement evaluation.The framework is demonstrated with a power distribution network in Oklahoma.The results show that the estimated system resilience will reduce if tree failures are considered.Crown thinning can effectively enhance the system’s resilience,but the effectiveness is affected by both wind speed and direction.
文摘Fire is one of the most common accidents in daily life. In the process of fire accident prevention, monitoring and management, attention should be paid not only to the timeliness of automatic fire alarm equipment, but also to the danger of fire caused by building power distribution facilities. Therefore, in the process of design and construction of building electrical systems, We should not only pay attention to the design and installation of the automatic fire alarm system, but also pay attention to the fire protection power distribution system, so that the building electrical system can give full play to its functions, improve the utilization rate of building electrical facilities, and enable the building electrical system to play a good role in the process of fire accident prevention and alarm. This paper will focus on the topic of fire protection power distribution system design and automatic fire alarm system design in the building electrical system.
文摘In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.
基金Meg-science Engineering Project of the Chinese Academy of Sciences
文摘The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arranging the arc current intensities of every shot with a decay rank, the distributions of the arc current intensity correspond to the power laws, and the distribution obtained in the condition with the cryo-pump corresponds to the double Pareto distribution. Using the similar study method, the distributions of the arc duration are close to the power laws too. These power law distributions are formed rather naturally instead of being the results of purposeful seeking.