期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
Adaptive Power Control Based on Double-layer Q-learning Algorithm for Multi-parallel Power Conversion Systems in Energy Storage Station 被引量:1
1
作者 Yile Wu Le Ge +2 位作者 Xiaodong Yuan Xiangyun Fu Mingshen Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1714-1724,共11页
An energy storage station(ESS)usually includes multiple battery systems under parallel operation.In each battery system,a power conversion system(PCS)is used to connect the power system with the battery pack.When allo... An energy storage station(ESS)usually includes multiple battery systems under parallel operation.In each battery system,a power conversion system(PCS)is used to connect the power system with the battery pack.When allocating the ESS power to multi-parallel PCSs in situations with fluctuating operation,the existing power control methods for parallel PCSs have difficulty in achieving the optimal efficiency during a long-term time period.In addition,existing Q-learning algorithms for adaptive power allocation suffer from the curse of dimensionality.To overcome these challenges,an adaptive power control method based on the double-layer Q-learning algorithm for n parallel PCSs of the ESS is proposed in this paper.First,a selection method for the power allocation coefficient is developed to avoid repeated actions.Then,the outer action space is divided into n+1 power allocation modes according to the power allocation characteristics of the optimal operation efficiency.The inner layer uses an actor neural network to determine the optimal action strategy of power allocations in the non-steady state.Compared with existing power control methods,the proposed method achieves better performance for both static and dynamic operation efficiency optimization.The proposed method optimizes the overall operation efficiency of PCSs effectively under the fluctuating power outputs of the ESS. 展开更多
关键词 Double-layer Q-learning adaptive power control energy storage station(ESS) operation efficiency power conversion system(PCS)
原文传递
Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults 被引量:1
2
作者 Shoudao HUANG Xuan WU +2 位作者 Xiao LIU Jian GAO Yunze HE 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第3期281-302,共22页
Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the ... Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs. 展开更多
关键词 direct-drive wind turbine electric power conversion system condition monitoring fault diagnosis operation control under faults fault tolerance
原文传递
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
3
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells power conversion efficiency Structural order Charge generation
在线阅读 下载PDF
Regulation of Power Conversion in Fuel Cells
4
作者 ZHANG J. K. Scott 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第4期466-469,共4页
Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{... Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{equilibrium\} potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs.the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E_0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells. 展开更多
关键词 Fuel cell power conversion coefficient Internal resistance PERFORMANCE POTENTIAL
在线阅读 下载PDF
Highly Efficient Power Conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
5
作者 凌云 闫东晓 +4 位作者 王鹏飞 汪茂 文琪 刘峰 王宇钢 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期91-94,共4页
A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion e... A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes. 展开更多
关键词 of on in from with Highly Efficient power conversion from Salinity Gradients with Ion-Selective Polymeric Nanopores
原文传递
Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
6
作者 王文娟 李冲 +4 位作者 周弘毅 武华 栾信信 史磊 郭霞 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期181-185,共5页
The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 ... The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model. 展开更多
关键词 vertical-cavity surface-emitting laser arrays power conversion efficiency oxide-aperture
原文传递
Study on Purchasing Power Conversion Coefficient at Par
7
作者 Zhiping Liu Xiaoxia Wang Daisong Li 《Chinese Business Review》 2005年第1期19-22,共4页
The basic theory of the purchasing power at par refers to the rate of one country's currency to U.S. dollar while purchasing "a basket" goods and services in the same quantity and quality respectively in this count... The basic theory of the purchasing power at par refers to the rate of one country's currency to U.S. dollar while purchasing "a basket" goods and services in the same quantity and quality respectively in this country and U.S.A. This paper gives out calculation method of purchasing power conversion coefficient at par and how to calculate the non-base year purchasing power at par. 展开更多
关键词 the purchasing power at par the purchasing power conversion coefficient at par
在线阅读 下载PDF
Manipulation strategy of cation inhomogeneity in perovskite solar cells 被引量:1
8
作者 Jiale Sun Xuxia Shai +6 位作者 Weitao chen Shenchao Li Jinlan He Xinxing Liu Dongmei He Yue Yu Jiangzhao Chen 《Journal of Semiconductors》 2025年第5期9-12,共4页
In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-c... In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-cation perovskites(MCPs) have been extensively used as absorber thin films in perovskite solar cells(PSCs), achieving high power conversion efficiencies(PCE) over 26%^([1, 2]). 展开更多
关键词 cation inhomogeneity perovskite solar cells pscs perovskite solar cells absorber thin films mixed cation perovskites organicinorganic lead halide perovskites power conversion efficiency
在线阅读 下载PDF
Dual‑Donor‑Induced Crystallinity Modulation Enables 19.23% Efficiency Organic Solar Cells
9
作者 Anhai Liang Yuqing Sun +9 位作者 Sein Chung Jiyeong Shin Kangbo Sun Chaofeng Zhu Jingjing Zhao Zhenmin Zhao Yufei Zhong Guangye Zhang Kilwon Cho Zhipeng Kan 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期376-388,共13页
Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challengin... Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells. 展开更多
关键词 Trap-assisted charge recombination PHOTOLUMINESCENCE MISCIBILITY Current leakage power conversion efficiency
在线阅读 下载PDF
Tailoring the configuration of polymer passivators in perovskite solar cells
10
作者 Yaohua Li Qi Cao Xuanhua Li 《Chinese Journal of Structural Chemistry》 2025年第2期10-13,共4页
The rapid advancement of metal halide perovskites can be attributed to their exceptional optoelectronic properties and facile solution processing technique.Noteworthy strides have been achieved in the realm of perovsk... The rapid advancement of metal halide perovskites can be attributed to their exceptional optoelectronic properties and facile solution processing technique.Noteworthy strides have been achieved in the realm of perovskite solar cells(PSCs),with a certified power conversion efficiency(PCE)escalating to 26.7%over the course of a decade,positioning them as promising contenders for next-generation photovoltaic technologies[1].However,the formation of crystal defects,including anion/cation vacancies,Pb–I antisite defects,and uncoordinated Pb^(2+),along the surface and grain boundaries(GBs)of perovskite layers during the solution processing stage poses a significant challenge,compromising the photoelectric performance and stability of PSCs. 展开更多
关键词 antisite d perovskite solar cells optoelectronic properties metal halide perovskites perovskite solar cells pscs power conversion efficiency crystal defects anion cation vacancies
原文传递
Non-conjugated polymer as printable electron transport layer for efficient and stable organic photovoltaic cells
11
作者 Hao Hou Qian Kang +5 位作者 Yafei Wang Wenxuan Wang Jianqiu Wang Yong Cui Qing Liao Jianhui Hou 《Journal of Energy Chemistry》 2025年第6期835-842,I0017,共9页
With the continuous improvement of photovoltaic efficiency in the organic photovoltaic(OPV),interface engineering has emerged as a pivotal issue in their practical deployment.Currently,the robust crystallinity of smal... With the continuous improvement of photovoltaic efficiency in the organic photovoltaic(OPV),interface engineering has emerged as a pivotal issue in their practical deployment.Currently,the robust crystallinity of small molecule electron transport layers(ETLs)and the poor film-forming abilities of conjugated polymer ETLs are a huge obstacle in this field.Herein,an innovative and efficient nonconjugated polymer ETL,namely PNDI-SO,which contains polar cationic segments for solubility and conjugated units for efficient charge transport in stable OPV cells,is reported.Endowed with suitable energy levels and excellent electron extraction capabilities,PNDI-SO-based OPV cells attain a power conversion efficiency(PCE)of 18.54%.Furthermore,compared with conventional OPV cells utilizing PFN-Br or PDINN,PNDI-SO substantially enhances long-term stability under continuous illumination,evidenced by a T80 lifetime(signifying retention of 80% of initial performance)exceeding 1250 h.Notably,through scanning electron microscope,we verified that PNDI-SO achieves a harmonious balance between film-forming ability and charge transport properties for ETL,enabling the blade-coating OPV based on PBDB-TF:BTP-eC9 to achieve a PCE of 17.47%.These results suggest the potential of PNDI-SO as a promising interface material for industrial printing applications in OPV fabrication. 展开更多
关键词 Organic solar cell Electron transport layer power conversion efficiency Naphthalene diimide Blade-coating
在线阅读 下载PDF
vip Editorial:Equipment technology of power transmission and distribution supporting the new-type power system
12
作者 Marcio Szechtman 《High Voltage》 2025年第3期531-532,共2页
1|INTRODUCTION The new-type power system,with a strong,intelligent and flexible grid as its hub platform,is a key carrier for achieving the goals of carbon peak and carbon neutrality.Among them,AC/DC transmission and ... 1|INTRODUCTION The new-type power system,with a strong,intelligent and flexible grid as its hub platform,is a key carrier for achieving the goals of carbon peak and carbon neutrality.Among them,AC/DC transmission and distribution equipment is the core for achieving power conversion and transmission.In order to adapt to the high proportion of new energy,large-scale energy storage,and diversified flexible load,and to promote the high-quality construction of the new-type power system,it is urgent to carry out research and devel-opment on flexible and intelligent new transmission and distribution equipment. 展开更多
关键词 strong intelligent flexible grid power conversion transmission carbon peak carbon peak carbon neutrality large scale energy storage new type power system ac dc transmission distribution equipment diversified flexible load
在线阅读 下载PDF
Surpassing Shockley-Queisser Efficiency Limit in Photovoltaic Cells
13
作者 Zhigang Li Bingqing Wei 《Nano-Micro Letters》 2025年第12期804-808,共5页
The Shockley-Queisser(S-Q)model sets a theoretical limit on the power conversion efficiency(PCE)of single-junction solar cells at around 33%.Recently,a PCE of 50%-60%was achieved for the first time in n-type singlejun... The Shockley-Queisser(S-Q)model sets a theoretical limit on the power conversion efficiency(PCE)of single-junction solar cells at around 33%.Recently,a PCE of 50%-60%was achieved for the first time in n-type singlejunction Si solar cells by inhibiting light conversion to heat at low temperatures.Understanding these new observations opens tremendous opportunities for designing solar cells with even higher PCE to provide efficient and powerful energy sources for cryogenic devices and outer and deep space explorations. 展开更多
关键词 Single-junction Si solar cells power conversion efficiency Shockley-Queisser model Carrier freeze-out effect
在线阅读 下载PDF
Application of Single-to-Single Phase Matrix Conversion in Conventional Rectifier-Inverter 被引量:3
14
作者 YANG Xi jun, GONG You min School of Electromechanical Engineering and Automation, Shanghai University, Shanghai 200072, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第3期211-216,共6页
The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the t... The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns. 展开更多
关键词 sinele to sinele phase matrix electric power conversion introduction rectifier inverter DC link electrolytic capacitor mains side power factor
在线阅读 下载PDF
Layered-stacking of titania films for solar energy conversion:Toward tailored optical,electronic and photovoltaic performance 被引量:1
15
作者 Wu-Qiang Wu Jin-Feng Liao Dai-Bin Kuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期690-702,共13页
Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conver... Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process. 展开更多
关键词 TiO2 Charge transport Light scattering power conversion efficiency Solar cells
在线阅读 下载PDF
Analysis of Power Model for Linear Plasma Device
16
作者 张卫卫 邓柏权 +6 位作者 左浩毅 曾宪俊 曹小岗 薛晓艳 欧巍 曹智 芶富均 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第8期844-847,共4页
A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the de... A single cathode linear plasma device has been designed and constructed to investigate the interactions between plasma and materials at the Sichuan University. In order to further investigate the Ohmic power of the device, the output heat load on the specimen and electric potential difference(between cathode and anode) have been tested under different discharge currents. This special power distribution in the radial direction of the plasma discharge channel has also been discussed and described by some improved integral equations in this paper;it can be further simplified as P ∝ α^(-2) in one-parameter. Besides, we have measured the power loss of the channel under different discharge currents by the calorimetric method, calculated the effective power of the device and evaluated the performances of the plasma device through the power efficiency analysis. 展开更多
关键词 PLASMA RESISTIVITY power conversion efficiency
在线阅读 下载PDF
An Adaptive Wireless Power Sharing Control for Multiterminal HVDC
17
作者 Hasan Alrajhi 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期117-129,共13页
Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined contro... Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method. 展开更多
关键词 Active power control fixed power sharing current control HVDC transmission MTDC voltage source converter(VSC) power sharing control adaptive wireless control power conversion
在线阅读 下载PDF
PSIM Simulation in the Teaching of "Power Transformation Technology"
18
作者 LIUSiyan GEQing ZHONGYong 《外文科技期刊数据库(文摘版)教育科学》 2022年第8期093-097,共5页
Power supply transformation technology is a required course for new energy major, which is a comprehensive course. Under the traditional teaching mode, students have no concept of waveform, which brings many difficult... Power supply transformation technology is a required course for new energy major, which is a comprehensive course. Under the traditional teaching mode, students have no concept of waveform, which brings many difficulties to teaching and experiment. A power transformation technology based on PSIM simulation is proposed. Before class, students solve the task of building the simulation model, and then introduce the knowledge points. This can not only make up for the lack of experimental facilities and also stimulate students interest in learning. Classroom teaching practice shows that this method can effectively improve the teaching and experiment efficiency. 展开更多
关键词 PSIM software SIMULATION power conversion technology
在线阅读 下载PDF
Development and industrial tests of the first LNG hydraulic turbine system in China
19
作者 Chen Jie Hua Yihuai +2 位作者 Su Qingbo Wan Xueli Li Zhenlin 《Natural Gas Industry B》 2016年第4期283-290,共8页
The cryogenic hydraulic turbine can be used to replace the conventional JeT valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant.This advanced technology is not only t... The cryogenic hydraulic turbine can be used to replace the conventional JeT valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant.This advanced technology is not only to enhance the efficiency of the liquefaction plant,but to usher a new trend in the development of global liquefaction technologies.China has over 136 liquefaction plants,but the cryogenic hydraulic turbines have not been deployed in industrial utilization.In addition,these turbines cannot be manufactured domestically.In this circumstance,through working on the key technologies for LNG hydraulic turbine process&control system development,hydraulic model optimization design,structure design and manufacturing,the first domestic cryogenic hydraulic turbine with a flow rate of 40 m^(3)/h was developed to recover the pressure energy from the LNG of cold box.The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions,including start-stop,variable flow rates and variable rotation speeds.Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design.In addition,the process&control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG JeT valve.As a result,the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2%and generate power of 8.3 kW. 展开更多
关键词 LNG Natural gas liquefaction Cryogenic hydraulic turbine Frequency conversion power Energy recovery Industrial test JeT valve
在线阅读 下载PDF
High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells 被引量:2
20
作者 Runlong Gao Rui Chen +10 位作者 Pengying Wan Xiao Ouyang Qiantao Lei Qi Deng Xinyu Guan Guangda Niu Jiang Tang Wei Chen Zonghao Liu Xiaoping Ouyang Linyue Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期160-167,共8页
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.... Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells. 展开更多
关键词 formamidinium-cesium perovskite PHOSPHOR photovoltaic converter power conversion efficiency radio-photovoltaic cell
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部