This thesis attempts to analyze the presentation of Duke's power in Robert Browning's My Last Duchess through theory of transitivity in functional stylistics. Through transitivity analysis, Duke's dominati...This thesis attempts to analyze the presentation of Duke's power in Robert Browning's My Last Duchess through theory of transitivity in functional stylistics. Through transitivity analysis, Duke's dominating position will be revealed, and the thematic significance and language features of this poem would be shed light upon as well.展开更多
In order to understand the mechanism of the confinement bifurcation and H-mode power threshold in magnetically confined plasma,a new dynamical model of the L-H transition based on edge instability phase transition(E...In order to understand the mechanism of the confinement bifurcation and H-mode power threshold in magnetically confined plasma,a new dynamical model of the L-H transition based on edge instability phase transition(EIPT) has been developed.With the typical plasma parameters of the EAST tokamak,the self-consistent turbulence growth rate is analyzed using the simplest case of pressure-driven ballooning-type instability,which indicates that the L-H transition can be caused by the stabilization of the edge instability through EIPT.The weak E?×?B flow shear in L-mode is able to increase the ion inertia of the electrostatic motion by increasing the radial wave number of the tilted turbulence structures,which play an important role for accelerating the trigger process of EIPT rather than directly to suppress the turbulent transport.With the acceleration mechanism of E?×?B flow shear,fast L-H and H-L transitions are demonstrated under the control of the input heating power.Due to the simplified scrape-offlayer boundary condition applied,the ratio between the heating powers at the H-L and L-H transition respectively differs from the ratio by Nusselt number.The results of the modeling reveal a scaling of the power threshold of the L-H transition,P_(L-H)?∝?n^(0.76) B^(0.8) for deuterium plasma.It is found finite Larmor radius induces an isotope effect of the H-mode power threshold.展开更多
The world is facing the third important global power shift.The United States,EU, Japan,Russia,China,and the newly emerging power group are becoming the six big forces in the international center stage,while the former...The world is facing the third important global power shift.The United States,EU, Japan,Russia,China,and the newly emerging power group are becoming the six big forces in the international center stage,while the former three forces and the latter three belong to two groups,waning and waxing respectively.The major shift in the global balance of power is bound to give rise to the transitional multi-polar configuration,which implies a shifting of leadership over the configuration,China and U.S.outweighing other forces,global issues looming large,homogeneity blending with heterogeneity,and a shifting center of world powers.The transitional multi-polar configuration is all about change,upon which China is one of the decisive forces.展开更多
This paper explores how transitivity system functions in the novel A Rose for Emily, especially how it builds up and reflects the suppression on Emily by Emily's father, who represents the patriarchal value system...This paper explores how transitivity system functions in the novel A Rose for Emily, especially how it builds up and reflects the suppression on Emily by Emily's father, who represents the patriarchal value system and by the citizens who represents the southern traditional value system. This paper also elaborates how Emily appeared to be powerless and was dominated by the two groups of power, and how her humanity and emotions were suppressed in the conflict of the two categories of power.展开更多
To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail tra...To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.展开更多
The use of an electrical network as close as possible to its limits can lead to its instability in the event of a high amplitude disturbance. The damping of system oscillations can be achieved by conventional means of...The use of an electrical network as close as possible to its limits can lead to its instability in the event of a high amplitude disturbance. The damping of system oscillations can be achieved by conventional means of voltage and speed regulation but also by FACTS (Flexible AC Transmission Systems) devices, which are increasingly used in power networks. In this work, optimal control coordination between a hybrid power flow controller and a three-level inverter was used to improve the transient stability of a transmission line. The UPFC is a combination of a serial compensator (SSSC) and a parallel compensator (STATCOM) both connected to a DC-LINK DC bus. The SSSC acts as a voltage source for the network and injects a voltage that can be adjusted in phase and amplitude in addition to the network voltage;the STATCOM acts as a current source. The approach used is tested in the Matlab Simulink environment on a single machine network. Optimal controller tuning gives a better transient stability improvement by reducing the transport angle oscillations from 248.17% to 9.85%.展开更多
The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investi...The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs.展开更多
An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate v...An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate values of the scaling lengths associated with vortex shedding and shear layer frequencies to predict the power law relationship with Reynolds number. The predicted results are in good agreement with experimental results. The findings will provide a greater insight into the overall phenomenon involved.展开更多
Tailor rolled blank (TRB) is a type of emerging material to produce lightweight vehicle parts. Transitional zoners shape is an important parameter for tailor rolled blank. It not only affects mold design and the loc...Tailor rolled blank (TRB) is a type of emerging material to produce lightweight vehicle parts. Transitional zoners shape is an important parameter for tailor rolled blank. It not only affects mold design and the local carrying capacity of the stamping parts, but also determines the maximum value and variation characteristics of rolling force. How to get the best transitional zone's shape is a key problem for production of tailor rolled blank. A double power function is put forward using for transitional curve, which is continuous and smooth at all connection points inde- pendent of its parameters, so the sudden change of mechanical parameters during rolling and forming process can be avoided. At the same time, the velocity formula and restriction for arbitrary transitional curve are derived to preset vertical velocity of the roller and judge whether the curve can be rolled successfully or not. Then, the finite element method (FEM) is used to verify the precision of velocity formula and study the mechanical characteristics of different curves. Finally, a method to obtain the optimal curve equation is put forward and verified.展开更多
Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration o...Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.展开更多
A comprehensive hot wire investigation of the flow around a circular cylinder is carried out in an 18" × 18" wind tunnel to look into the dominant frequencies at the stagnation, separation and separated shear l...A comprehensive hot wire investigation of the flow around a circular cylinder is carried out in an 18" × 18" wind tunnel to look into the dominant frequencies at the stagnation, separation and separated shear layers in the transition Reynolds number range. The majority of the experiments are carried out at Reynolds number of 4.5×104, with additional transition frequency tests at Reynolds numbers of 2.9×104, 3.3×104 and 9.7×104 respectively. The results are analysed in terms of power spectral density. While the frequency associated with stagnation is found to be essentially due to vortex shedding, frequency doubling of vortex shedding is also evident in the separated shear layers. Two peaks associated with transition frequencies are detected and their possible implications are presented.展开更多
Ternary transition metal dichalcogenide alloys with spatially graded bandgaps are an emerging class of two-dimensional materials with unique features,which opens up new potential for device applications.Here,visible–...Ternary transition metal dichalcogenide alloys with spatially graded bandgaps are an emerging class of two-dimensional materials with unique features,which opens up new potential for device applications.Here,visible–near-infrared and self-powered phototransistors based on spatially bandgap-graded MoS2(1−x)Se2x alloys,synthesized by a simple and controllable chemical solution deposition method,are reported.The graded bandgaps,arising from the spatial grading of Se composition and thickness within a single domain,are tuned from 1.83 to 1.73 eV,leading to the formation of a homojunction with a builtin electric field.Consequently,a strong and sensitive gate-modulated photovoltaic effect is demonstrated,enabling the homojunction phototransistors at zero bias to deliver a photoresponsivity of 311 mA W−1,a specific detectivity up to^10^11 Jones,and an on/off ratio up to^10^4.Remarkably,when illuminated by the lights ranging from 405 to 808 nm,the biased devices yield a champion photoresponsivity of 191.5 A W−1,a specific detectivity up to^1012 Jones,a photoconductive gain of 10^6–10^7,and a photoresponsive time in the order of^50 ms.These results provide a simple and competitive solution to the bandgap engineering of two-dimensional materials for device applications without the need for p–n junctions.展开更多
文摘This thesis attempts to analyze the presentation of Duke's power in Robert Browning's My Last Duchess through theory of transitivity in functional stylistics. Through transitivity analysis, Duke's dominating position will be revealed, and the thematic significance and language features of this poem would be shed light upon as well.
基金supported by National Natural Science Foundation of China under Contract Nos.11575235 and 11422546China Postdoctoral Science Foundation under Contract No.2016M602043+2 种基金the National Magnetic Confinement Fusion Science Program of China under Contract No.2015GB101002Key Research Program of Frontier Sciences,CAS,Grant No.QYZDB-SSW-SLH001K C Wong Education Foundation
文摘In order to understand the mechanism of the confinement bifurcation and H-mode power threshold in magnetically confined plasma,a new dynamical model of the L-H transition based on edge instability phase transition(EIPT) has been developed.With the typical plasma parameters of the EAST tokamak,the self-consistent turbulence growth rate is analyzed using the simplest case of pressure-driven ballooning-type instability,which indicates that the L-H transition can be caused by the stabilization of the edge instability through EIPT.The weak E?×?B flow shear in L-mode is able to increase the ion inertia of the electrostatic motion by increasing the radial wave number of the tilted turbulence structures,which play an important role for accelerating the trigger process of EIPT rather than directly to suppress the turbulent transport.With the acceleration mechanism of E?×?B flow shear,fast L-H and H-L transitions are demonstrated under the control of the input heating power.Due to the simplified scrape-offlayer boundary condition applied,the ratio between the heating powers at the H-L and L-H transition respectively differs from the ratio by Nusselt number.The results of the modeling reveal a scaling of the power threshold of the L-H transition,P_(L-H)?∝?n^(0.76) B^(0.8) for deuterium plasma.It is found finite Larmor radius induces an isotope effect of the H-mode power threshold.
文摘The world is facing the third important global power shift.The United States,EU, Japan,Russia,China,and the newly emerging power group are becoming the six big forces in the international center stage,while the former three forces and the latter three belong to two groups,waning and waxing respectively.The major shift in the global balance of power is bound to give rise to the transitional multi-polar configuration,which implies a shifting of leadership over the configuration,China and U.S.outweighing other forces,global issues looming large,homogeneity blending with heterogeneity,and a shifting center of world powers.The transitional multi-polar configuration is all about change,upon which China is one of the decisive forces.
文摘This paper explores how transitivity system functions in the novel A Rose for Emily, especially how it builds up and reflects the suppression on Emily by Emily's father, who represents the patriarchal value system and by the citizens who represents the southern traditional value system. This paper also elaborates how Emily appeared to be powerless and was dominated by the two groups of power, and how her humanity and emotions were suppressed in the conflict of the two categories of power.
文摘To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.
文摘The use of an electrical network as close as possible to its limits can lead to its instability in the event of a high amplitude disturbance. The damping of system oscillations can be achieved by conventional means of voltage and speed regulation but also by FACTS (Flexible AC Transmission Systems) devices, which are increasingly used in power networks. In this work, optimal control coordination between a hybrid power flow controller and a three-level inverter was used to improve the transient stability of a transmission line. The UPFC is a combination of a serial compensator (SSSC) and a parallel compensator (STATCOM) both connected to a DC-LINK DC bus. The SSSC acts as a voltage source for the network and injects a voltage that can be adjusted in phase and amplitude in addition to the network voltage;the STATCOM acts as a current source. The approach used is tested in the Matlab Simulink environment on a single machine network. Optimal controller tuning gives a better transient stability improvement by reducing the transport angle oscillations from 248.17% to 9.85%.
基金Supported by the National Natural Science Foundation of China(21473048,21303039)the Natural Science Foundation of Hebei Province(B2016205161,B2015205163)the 2015 Hebei Province Undergraduate Training Programs for Innovation and Entrepreneurship
文摘The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs.
文摘An attempt has been made to explore whether the power relation can be obtained from theoretical considerations. The classical laminar and turbulent boundary layer concepts have been employed to determine appropriate values of the scaling lengths associated with vortex shedding and shear layer frequencies to predict the power law relationship with Reynolds number. The predicted results are in good agreement with experimental results. The findings will provide a greater insight into the overall phenomenon involved.
基金Item Sponsored by National Science and Technology Support Program of China(2011BAF15B02)Natural Science Foundation of Hebei Province of China(E2012203108)+2 种基金Science and Technology Research Program of the Colleges and Universities in Hebei of China(ZD2014034)Independent Research Project of Yanshan University of China(14LGA003)Open Project of National Engineering Research Center for Equipment and Technology of Cold Rolling Strip of China(NECSR-201206)
文摘Tailor rolled blank (TRB) is a type of emerging material to produce lightweight vehicle parts. Transitional zoners shape is an important parameter for tailor rolled blank. It not only affects mold design and the local carrying capacity of the stamping parts, but also determines the maximum value and variation characteristics of rolling force. How to get the best transitional zone's shape is a key problem for production of tailor rolled blank. A double power function is put forward using for transitional curve, which is continuous and smooth at all connection points inde- pendent of its parameters, so the sudden change of mechanical parameters during rolling and forming process can be avoided. At the same time, the velocity formula and restriction for arbitrary transitional curve are derived to preset vertical velocity of the roller and judge whether the curve can be rolled successfully or not. Then, the finite element method (FEM) is used to verify the precision of velocity formula and study the mechanical characteristics of different curves. Finally, a method to obtain the optimal curve equation is put forward and verified.
基金supported by the National Natural Science Foundation of China(No.52130702,No.52177093)。
文摘Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.
文摘A comprehensive hot wire investigation of the flow around a circular cylinder is carried out in an 18" × 18" wind tunnel to look into the dominant frequencies at the stagnation, separation and separated shear layers in the transition Reynolds number range. The majority of the experiments are carried out at Reynolds number of 4.5×104, with additional transition frequency tests at Reynolds numbers of 2.9×104, 3.3×104 and 9.7×104 respectively. The results are analysed in terms of power spectral density. While the frequency associated with stagnation is found to be essentially due to vortex shedding, frequency doubling of vortex shedding is also evident in the separated shear layers. Two peaks associated with transition frequencies are detected and their possible implications are presented.
基金supported by Grants from the UK EPSRC Future Compound Semiconductor Manufacturing Hub(EP/P006973/1)the financial support from EPSRC(EP/L018330/1,EP/N032888/1)+3 种基金the U.S.Army Research Laboratory under Cooperative Agreement Number W911NF-16-2-0120the “973 Program—the National Basic Research Program of China” Special Funds for the Chief Young Scientis(2015CB358600)the Excellent Young Scholar Fund from National Natural Science Foundation of China(21422103)the China Scholarship Council(CSC)
文摘Ternary transition metal dichalcogenide alloys with spatially graded bandgaps are an emerging class of two-dimensional materials with unique features,which opens up new potential for device applications.Here,visible–near-infrared and self-powered phototransistors based on spatially bandgap-graded MoS2(1−x)Se2x alloys,synthesized by a simple and controllable chemical solution deposition method,are reported.The graded bandgaps,arising from the spatial grading of Se composition and thickness within a single domain,are tuned from 1.83 to 1.73 eV,leading to the formation of a homojunction with a builtin electric field.Consequently,a strong and sensitive gate-modulated photovoltaic effect is demonstrated,enabling the homojunction phototransistors at zero bias to deliver a photoresponsivity of 311 mA W−1,a specific detectivity up to^10^11 Jones,and an on/off ratio up to^10^4.Remarkably,when illuminated by the lights ranging from 405 to 808 nm,the biased devices yield a champion photoresponsivity of 191.5 A W−1,a specific detectivity up to^1012 Jones,a photoconductive gain of 10^6–10^7,and a photoresponsive time in the order of^50 ms.These results provide a simple and competitive solution to the bandgap engineering of two-dimensional materials for device applications without the need for p–n junctions.