Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational s...Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.展开更多
Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active mate...Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active material in the fabrication of supercapacitor(SC)and triboelectric nanogenerator(TENG).At first,a binder-free ZnCuSe_(2)/CF was synthesized via a simple and facial hydrothermal synthesis approach,and the electrochemical properties of the obtained ZnCuSe_(2)/CF were evaluated by fabricating a symmetric quasi-solid-state SC(SQSSC).The ZCS-2(Zn:Cu ratio of 2:1)material deposited CF-based SQSSC exhibited good electrochemical properties,and the obtained maximum energy and power densities were 7.5 Wh kg^(-1)and 683.3 W kg^(-1),respectively with 97.6%capacitance retention after 30,000 cycles.Furthermore,the ZnCuSe_(2)/CF was coated with silicone rubber elastomer using a doctor blade technique,which is used as a negative triboelectric material in the fabrication of the multiple TENG(M-TENG).The fabricated M-TENG exhibited excellent electrical output performance,and the robustness and mechanical stability of the device were studied systematically.The practicality and applicability of the proposed M-TENG and SQSSC were systematically investigated by powering various low-power portable electronic components.Finally,the SQSSC was combined with the M-TENG to construct a SCHPS.The fabricated SCHPS provides a feasible solution for sustainable power supply,and it shows great potential in self-powered portable electronic device applications.展开更多
In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of...In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of area-wide system strength in power systems with high inverter-based resource(IBR)penetration,thereby contributing to the mitigation of weak grid issues.Unlike traditional models,this approach considers the interactions among multiple IBRs.The UC problem is initially formulated as a mixed-integer nonlinear programming(MINLP)model,reflecting WSCR and bus impedance matrix modification constraints.To enhance computational tractability,the model is transformed into a mixed-integer linear programming(MILP)form.The effectiveness of the proposed approach is validated through simulations on the IEEE 5-bus,IEEE 39-bus,and a modified Korean power system,demonstrating the ability of the proposed UC model enhancing system strength compared to the conventional methodologies.展开更多
The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-domin...The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-dominated grids.Conventional classifica-tions,which decouple voltage,frequency,and rotor angle stability,fail to address the emerging strong voltage‒angle coupling effects caused by RES dynamics.This coupling introduces complex oscillation modes and undermines system robustness,neces-sitating novel stability assessment tools.Recent studies focus on eigenvalue distributions and damping redistribution but lack quantitative criteria and interpretative clarity for coupled stability.This work proposes a transient energy-based framework to resolve these gaps.By decomposing transient energy into subsystem-dissipated components and coupling-induced energy exchange,the method establishes stability criteria compatible with a broad variety of inverter-interfaced devices while offering an intuitive energy-based interpretation for engineers.The coupling strength is also quantified by defining the relative coupling strength index,which is directly related to the transient energy interpretation of the coupled stability.Angle‒voltage coupling may induce instability by injecting transient energy into the system,even if the individual phase angle and voltage dynamics themselves are stable.The main contributions include a systematic stability evaluation framework and an energy decomposition approach that bridges theoretical analysis with practical applicability,addressing the urgent need for tools for managing modern power system evolving stability challenges.展开更多
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT...The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.展开更多
This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as ru...This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies.展开更多
This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multipl...This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multiple-source-based interconnected power system that consists of thermal,gas,and hydro power plants.The Proportional-Integral-Derivative controller,which is utilized for automated generation control in an interconnected hybrid power systemwith aDClink connecting two regions,has been tuned using the proposed optimization technique.An Electric Vehicle is taken into consideration only as an electrical load.The Quasi Oppositional Sine Cosinemethod’s performance and efficacy have been compared to the Sine Cosine Algorithm and optimal output feedback controller tuning performance.Applying the QOSCA optimization technique,which has only been shown in this study in the context of an LFC research thus far,makes this paper unique.The main objective has been used to assess and compare the dynamic performances of the recommended controller along with QOSCA optimisation technic.The resilience of the controller is examined using two different system parameters:B(frequency bias parameter)and R(governor speed regulation).The sensitivity analysis results demonstrate the high reliability of the QOSCA algorithm-based controller.Once optimal controller gains are established for nominal conditions,step load perturbations up to±10%&±25%in the nominal values of the systemparameters and operational load condition do not require adjustment of the controller.Ultimately,a scenario is examined whereby EVs are used for area 1,and a single PID controller is used rather than three.展开更多
Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple ...Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple levels to serve the heat demands of consumers with different temperature grades,so that energy is utilized in cascade.While a large number of steam levels enhances energy utilization efficiency,it also tends to cause a complex steam pipeline network in the industrial park.In practice,a moderate number of steam levels is always adopted in SPSs,leading to temperature mismatches between heat supply and demand for some consumers.This study proposes a distributed steam turbine system(DSTS)consisting of main steam turbines on the energy supply side and auxiliary steam turbines on the energy consumption side,aiming to balance the heat production costs,the distance-related costs,and the electricity generation of SPSs in industrial parks.A mixed-integer nonlinear programming model is established for the optimization of SPSs,with the objective of minimizing the total annual cost(TAC).The optimal number of steam levels and the optimal configuration of DSTS for an industrial park can be determined by solving the model.A case study demonstrates that the TAC of the SPS is reduced by 220.6×10^(3)USD(2.21%)through the arrangement of auxiliary steam turbines.The sub-optimal number of steam levels and a non-optimal operating condition slightly increase the TAC by 0.46%and 0.28%,respectively.The sensitivity analysis indicates that the optimal number of steam levels tends to decrease from 3 to 2 as electricity price declines.展开更多
Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors...Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors and operations are compromised,which can lead to big problems,disruptions,failures and blackouts.In response to this challenge,this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory(Bi-LSTM)networks and employs explanatory methods from Artificial Intelligence(AI).Not only does the suggested architecture detect potential fraud with high accuracy,but it also makes its decisions transparent,enabling operators to take appropriate action.Themethod developed here utilizesmodel-free,interpretable tools to identify essential input elements,thereby making predictions more understandable and usable.Enhancing detection performance is made possible by correcting class imbalance using Synthetic Minority Over-sampling Technique(SMOTE)-based data balancing.Benchmark power system data confirms that the model functions correctly through detailed experiments.Experimental results showed that Bi-LSTM+Explainable AI(XAI)achieved an average accuracy of 94%,surpassing XGBoost(89%)and Bagging(84%),while ensuring explainability and a high level of robustness across various operating scenarios.By conducting an ablation study,we find that bidirectional recursive modeling and ReLU activation help improve generalization and model predictability.Additionally,examining model decisions through LIME enables us to identify which features are crucial for making smart grid operational decisions in real time.The research offers a practical and flexible approach for detecting FDI attacks,improving the security of cyber-physical systems,and facilitating the deployment of AI in energy infrastructure.展开更多
With the ongoing digitalization and intelligence of power systems,there is an increasing reliance on large-scale data-driven intelligent technologies for tasks such as scheduling optimization and load forecasting.Neve...With the ongoing digitalization and intelligence of power systems,there is an increasing reliance on large-scale data-driven intelligent technologies for tasks such as scheduling optimization and load forecasting.Nevertheless,power data often contains sensitive information,making it a critical industry challenge to efficiently utilize this data while ensuring privacy.Traditional Federated Learning(FL)methods can mitigate data leakage by training models locally instead of transmitting raw data.Despite this,FL still has privacy concerns,especially gradient leakage,which might expose users’sensitive information.Therefore,integrating Differential Privacy(DP)techniques is essential for stronger privacy protection.Even so,the noise from DP may reduce the performance of federated learning models.To address this challenge,this paper presents an explainability-driven power data privacy federated learning framework.It incorporates DP technology and,based on model explainability,adaptively adjusts privacy budget allocation and model aggregation,thus balancing privacy protection and model performance.The key innovations of this paper are as follows:(1)We propose an explainability-driven power data privacy federated learning framework.(2)We detail a privacy budget allocation strategy:assigning budgets per training round by gradient effectiveness and at model granularity by layer importance.(3)We design a weighted aggregation strategy that considers the SHAP value and model accuracy for quality knowledge sharing.(4)Experiments show the proposed framework outperforms traditional methods in balancing privacy protection and model performance in power load forecasting tasks.展开更多
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of...The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.展开更多
Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration o...Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.展开更多
To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to trans...To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to transform renewable energy resources into primary power sources.The large-scale integration of high proportions of renewable energy sources and power electronic devices will dramatically change the operational mechanisms and control strategies of power systems.Existing wind and solar converters mostly adopt the grid-following control mode,which leads to significant challenges in system security and stability as it is insufficient to support the frequency and voltage of the grid.On the other hand,grid-forming control technology(GFM)can provide voltage and frequency support for the system,and thus becomes an effective measure to improve the inertia and damping characteristics of power systems.This paper illustrates the principles,control strategies,equipment types,application scenarios,and project implementation of grid-forming technology.The simulation and analysis based on a renewable-dominated real new-type power system show that GFM can significantly enhance the frequency and voltage support capacity of the power system,improve renewable energy accommodation capacity and grid transmission capacity under weak grid conditions,and play an important role in enhancing the stability and power supply reliability of renewable-dominated new-type power systems.展开更多
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ...The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under...At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy.展开更多
This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines...This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.展开更多
Power electronic-interfaced renewable energy sources(RES)exhibit lower inertia compared to traditional synchronous generators.The large-scale integration of RES has led to a significant reduction in system inertia,pos...Power electronic-interfaced renewable energy sources(RES)exhibit lower inertia compared to traditional synchronous generators.The large-scale integration of RES has led to a significant reduction in system inertia,posing significant challenges for maintaining frequency stability in future power systems.This issue has garnered considerable attention in recent years.However,the existing research has not yet achieved a comprehensive understanding of system inertia and frequency stability in the context of low-inertia systems.To this end,this paper provides a comprehensive review of the definition,modeling,analysis,evaluation,and control for frequency stability.It commences with an exploration of inertia and frequency characteristics in low-inertia systems,followed by a novel definition of frequency stability.A summary of frequency stability modeling,analysis,and evaluation methods is then provided,along with their respective applicability in various scenarios.Additionally,the two critical factors of frequency control—energy sources at the system level and control strategies at the device level—are examined.Finally,an outlook on future research in low-inertia power systems is discussed.展开更多
Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific re...In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.展开更多
基金The Key R&D Project of Jilin Province,Grant/Award Number:20230201067GX。
文摘Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708)partly supported by the GRRC program of Gyeonggi province(GRRCKyungHee2023-B03).
文摘Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active material in the fabrication of supercapacitor(SC)and triboelectric nanogenerator(TENG).At first,a binder-free ZnCuSe_(2)/CF was synthesized via a simple and facial hydrothermal synthesis approach,and the electrochemical properties of the obtained ZnCuSe_(2)/CF were evaluated by fabricating a symmetric quasi-solid-state SC(SQSSC).The ZCS-2(Zn:Cu ratio of 2:1)material deposited CF-based SQSSC exhibited good electrochemical properties,and the obtained maximum energy and power densities were 7.5 Wh kg^(-1)and 683.3 W kg^(-1),respectively with 97.6%capacitance retention after 30,000 cycles.Furthermore,the ZnCuSe_(2)/CF was coated with silicone rubber elastomer using a doctor blade technique,which is used as a negative triboelectric material in the fabrication of the multiple TENG(M-TENG).The fabricated M-TENG exhibited excellent electrical output performance,and the robustness and mechanical stability of the device were studied systematically.The practicality and applicability of the proposed M-TENG and SQSSC were systematically investigated by powering various low-power portable electronic components.Finally,the SQSSC was combined with the M-TENG to construct a SCHPS.The fabricated SCHPS provides a feasible solution for sustainable power supply,and it shows great potential in self-powered portable electronic device applications.
基金partially supported by Korea Electrotechnology Research Institute(KERI)Primary research program through the National Research Council of Science&Technology(NST)funded by the Ministry of Science and ICT(MSIT)(No.25A01038)partially supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2024-00218377).
文摘In this paper,a strength-constrained unit commitment(UC)model incorporating system strength constraints based on the weighted short-circuit ratio(WSCR)is proposed.This model facilitates the comprehensive assessment of area-wide system strength in power systems with high inverter-based resource(IBR)penetration,thereby contributing to the mitigation of weak grid issues.Unlike traditional models,this approach considers the interactions among multiple IBRs.The UC problem is initially formulated as a mixed-integer nonlinear programming(MINLP)model,reflecting WSCR and bus impedance matrix modification constraints.To enhance computational tractability,the model is transformed into a mixed-integer linear programming(MILP)form.The effectiveness of the proposed approach is validated through simulations on the IEEE 5-bus,IEEE 39-bus,and a modified Korean power system,demonstrating the ability of the proposed UC model enhancing system strength compared to the conventional methodologies.
基金supported by the Science and Technology Project of China Southern Power Grid Co.,Ltd under Grant 036000KC23090004(GDKJXM20231026).
文摘The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-dominated grids.Conventional classifica-tions,which decouple voltage,frequency,and rotor angle stability,fail to address the emerging strong voltage‒angle coupling effects caused by RES dynamics.This coupling introduces complex oscillation modes and undermines system robustness,neces-sitating novel stability assessment tools.Recent studies focus on eigenvalue distributions and damping redistribution but lack quantitative criteria and interpretative clarity for coupled stability.This work proposes a transient energy-based framework to resolve these gaps.By decomposing transient energy into subsystem-dissipated components and coupling-induced energy exchange,the method establishes stability criteria compatible with a broad variety of inverter-interfaced devices while offering an intuitive energy-based interpretation for engineers.The coupling strength is also quantified by defining the relative coupling strength index,which is directly related to the transient energy interpretation of the coupled stability.Angle‒voltage coupling may induce instability by injecting transient energy into the system,even if the individual phase angle and voltage dynamics themselves are stable.The main contributions include a systematic stability evaluation framework and an energy decomposition approach that bridges theoretical analysis with practical applicability,addressing the urgent need for tools for managing modern power system evolving stability challenges.
文摘The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.
文摘This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies.
文摘This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multiple-source-based interconnected power system that consists of thermal,gas,and hydro power plants.The Proportional-Integral-Derivative controller,which is utilized for automated generation control in an interconnected hybrid power systemwith aDClink connecting two regions,has been tuned using the proposed optimization technique.An Electric Vehicle is taken into consideration only as an electrical load.The Quasi Oppositional Sine Cosinemethod’s performance and efficacy have been compared to the Sine Cosine Algorithm and optimal output feedback controller tuning performance.Applying the QOSCA optimization technique,which has only been shown in this study in the context of an LFC research thus far,makes this paper unique.The main objective has been used to assess and compare the dynamic performances of the recommended controller along with QOSCA optimisation technic.The resilience of the controller is examined using two different system parameters:B(frequency bias parameter)and R(governor speed regulation).The sensitivity analysis results demonstrate the high reliability of the QOSCA algorithm-based controller.Once optimal controller gains are established for nominal conditions,step load perturbations up to±10%&±25%in the nominal values of the systemparameters and operational load condition do not require adjustment of the controller.Ultimately,a scenario is examined whereby EVs are used for area 1,and a single PID controller is used rather than three.
基金Financial support from the National Natural Science Foundation of China under Grant(22393954 and 22078358)is gratefully acknowledged.
文摘Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple levels to serve the heat demands of consumers with different temperature grades,so that energy is utilized in cascade.While a large number of steam levels enhances energy utilization efficiency,it also tends to cause a complex steam pipeline network in the industrial park.In practice,a moderate number of steam levels is always adopted in SPSs,leading to temperature mismatches between heat supply and demand for some consumers.This study proposes a distributed steam turbine system(DSTS)consisting of main steam turbines on the energy supply side and auxiliary steam turbines on the energy consumption side,aiming to balance the heat production costs,the distance-related costs,and the electricity generation of SPSs in industrial parks.A mixed-integer nonlinear programming model is established for the optimization of SPSs,with the objective of minimizing the total annual cost(TAC).The optimal number of steam levels and the optimal configuration of DSTS for an industrial park can be determined by solving the model.A case study demonstrates that the TAC of the SPS is reduced by 220.6×10^(3)USD(2.21%)through the arrangement of auxiliary steam turbines.The sub-optimal number of steam levels and a non-optimal operating condition slightly increase the TAC by 0.46%and 0.28%,respectively.The sensitivity analysis indicates that the optimal number of steam levels tends to decrease from 3 to 2 as electricity price declines.
基金the Deanship of Scientific Research and Libraries in Princess Nourah bint Abdulrahman University for funding this research work through the Research Group project,Grant No.(RG-1445-0064).
文摘Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors and operations are compromised,which can lead to big problems,disruptions,failures and blackouts.In response to this challenge,this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory(Bi-LSTM)networks and employs explanatory methods from Artificial Intelligence(AI).Not only does the suggested architecture detect potential fraud with high accuracy,but it also makes its decisions transparent,enabling operators to take appropriate action.Themethod developed here utilizesmodel-free,interpretable tools to identify essential input elements,thereby making predictions more understandable and usable.Enhancing detection performance is made possible by correcting class imbalance using Synthetic Minority Over-sampling Technique(SMOTE)-based data balancing.Benchmark power system data confirms that the model functions correctly through detailed experiments.Experimental results showed that Bi-LSTM+Explainable AI(XAI)achieved an average accuracy of 94%,surpassing XGBoost(89%)and Bagging(84%),while ensuring explainability and a high level of robustness across various operating scenarios.By conducting an ablation study,we find that bidirectional recursive modeling and ReLU activation help improve generalization and model predictability.Additionally,examining model decisions through LIME enables us to identify which features are crucial for making smart grid operational decisions in real time.The research offers a practical and flexible approach for detecting FDI attacks,improving the security of cyber-physical systems,and facilitating the deployment of AI in energy infrastructure.
文摘With the ongoing digitalization and intelligence of power systems,there is an increasing reliance on large-scale data-driven intelligent technologies for tasks such as scheduling optimization and load forecasting.Nevertheless,power data often contains sensitive information,making it a critical industry challenge to efficiently utilize this data while ensuring privacy.Traditional Federated Learning(FL)methods can mitigate data leakage by training models locally instead of transmitting raw data.Despite this,FL still has privacy concerns,especially gradient leakage,which might expose users’sensitive information.Therefore,integrating Differential Privacy(DP)techniques is essential for stronger privacy protection.Even so,the noise from DP may reduce the performance of federated learning models.To address this challenge,this paper presents an explainability-driven power data privacy federated learning framework.It incorporates DP technology and,based on model explainability,adaptively adjusts privacy budget allocation and model aggregation,thus balancing privacy protection and model performance.The key innovations of this paper are as follows:(1)We propose an explainability-driven power data privacy federated learning framework.(2)We detail a privacy budget allocation strategy:assigning budgets per training round by gradient effectiveness and at model granularity by layer importance.(3)We design a weighted aggregation strategy that considers the SHAP value and model accuracy for quality knowledge sharing.(4)Experiments show the proposed framework outperforms traditional methods in balancing privacy protection and model performance in power load forecasting tasks.
基金funded by the National Key Research and Development Program of China(2024YFE0106800)Natural Science Foundation of Shandong Province(ZR2021ME199).
文摘The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.
基金supported by the National Natural Science Foundation of China(No.52130702,No.52177093)。
文摘Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.
文摘To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to transform renewable energy resources into primary power sources.The large-scale integration of high proportions of renewable energy sources and power electronic devices will dramatically change the operational mechanisms and control strategies of power systems.Existing wind and solar converters mostly adopt the grid-following control mode,which leads to significant challenges in system security and stability as it is insufficient to support the frequency and voltage of the grid.On the other hand,grid-forming control technology(GFM)can provide voltage and frequency support for the system,and thus becomes an effective measure to improve the inertia and damping characteristics of power systems.This paper illustrates the principles,control strategies,equipment types,application scenarios,and project implementation of grid-forming technology.The simulation and analysis based on a renewable-dominated real new-type power system show that GFM can significantly enhance the frequency and voltage support capacity of the power system,improve renewable energy accommodation capacity and grid transmission capacity under weak grid conditions,and play an important role in enhancing the stability and power supply reliability of renewable-dominated new-type power systems.
基金Supported by National Natural Science Foundation of China (Grant Nos.52222215,52072051)Fundamental Research Funds for the Central Universities in China (Grant No.2023CDJXY-025)Chongqing Municipal Natural Science Foundation of China (Grant No.CSTB2023NSCQ-JQX0003)。
文摘The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金This researchwas supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA133)the Natural Science Foundation of Gansu(No.21JR7RA258).
文摘At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy.
基金supported in part by the National Natural Science Foundation of China(61933007, U21A2019, 62273005, 62273088, 62303301)the Program of Shanghai Academic/Technology Research Leader of China (20XD1420100)+2 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Natural Science Foundation of Anhui Province of China (2108085MA07)the Alexander von Humboldt Foundation of Germany。
文摘This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.
基金supported by the National Natural Science Foundation of China(U2166601)。
文摘Power electronic-interfaced renewable energy sources(RES)exhibit lower inertia compared to traditional synchronous generators.The large-scale integration of RES has led to a significant reduction in system inertia,posing significant challenges for maintaining frequency stability in future power systems.This issue has garnered considerable attention in recent years.However,the existing research has not yet achieved a comprehensive understanding of system inertia and frequency stability in the context of low-inertia systems.To this end,this paper provides a comprehensive review of the definition,modeling,analysis,evaluation,and control for frequency stability.It commences with an exploration of inertia and frequency characteristics in low-inertia systems,followed by a novel definition of frequency stability.A summary of frequency stability modeling,analysis,and evaluation methods is then provided,along with their respective applicability in various scenarios.Additionally,the two critical factors of frequency control—energy sources at the system level and control strategies at the device level—are examined.Finally,an outlook on future research in low-inertia power systems is discussed.
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.
文摘In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.