The integration of distributed generations(solar power,wind power),energy storage devices,and electric vehicles,causes unpredictable disturbances in power grids.It has become a top priority to coordinate the distribut...The integration of distributed generations(solar power,wind power),energy storage devices,and electric vehicles,causes unpredictable disturbances in power grids.It has become a top priority to coordinate the distributed generations,loads,and energy storages in order to better facilitate the utilization of new energy.Therefore,a novel algorithm based on deep reinforcement learning,namely the deep PDWoLF-PHC(policy dynamics based win or learn fast-policy hill climbing)network(DPDPN),is proposed to allocate power order among the various generators.The proposed algorithm combines the decision mechanism of reinforcement learning with the prediction mechanism of a deep neural network to obtain the optimal coordinated control for the source-grid-load.Consequently it solves the problem brought by stochastic disturbances and improves the utilization rate of new energy.Simulations are conducted with the case of the improved IEEE two-area and a case in the Guangdong power grid.Results show that the adaptability and control performance of the power system are improved using the proposed algorithm as compared with using other existing strategies.展开更多
A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth m...A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.展开更多
On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising cloc...On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses.展开更多
The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notc...The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notch angles β is obtained. The angulardistributions of stress for several cases are plotted. Theself-similarity behavior between the higher order terms is noticed.It is found that the terms with higher Order can be neglected for theV-notch angle β>45°.展开更多
Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow para...Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.展开更多
This research paper deals with the identification of the best location of the Power System Stabilizers (PSS) and also the tuning of PSS parameters in order to improve the overall dynamic stability of multi machine pow...This research paper deals with the identification of the best location of the Power System Stabilizers (PSS) and also the tuning of PSS parameters in order to improve the overall dynamic stability of multi machine power systems. The location of PSS is determined by identifying the critical modes and their corresponding first and second order eigenvalue sensitivities. In this formulation, sensitivity analysis of a particular mode can be performed with only its eigenvalues and their left and right eigenvectors. The simplicity and efficiency of this approach sharply contrast to the complexity of the traditional approach, where all eigenvalues and eigenvectors are required at the same time. The effectiveness of this method in selecting the optimum location for placement of PSSs is compared with the participation factor method. The proposed sensitivity theory used to identify the best PSS location in a five machine, eight bus El-Metwally and Malik System to increase the damping of both local and inter area modes for various operating conditions.展开更多
Shanghai high-repetition-rate XFEL and extreme light facility (SHINE), the first hard XFEL based on a superconducting accelerated structure in China, is now under development at the Shanghai Institute of Applied Physi...Shanghai high-repetition-rate XFEL and extreme light facility (SHINE), the first hard XFEL based on a superconducting accelerated structure in China, is now under development at the Shanghai Institute of Applied Physics, Chinese Academy of Sciences. In this paper, power losses caused by trapped longitudinal high-order modes (HOM), steady-state loss, and transient loss generated by untrapped HOMs in the 1.3-GHz SHINE cryomodule are investigated and calculated. The heat load generated by resistive wall wakefields is considered as well. Results are presented for power losses of every element in the 1.3-GHz cryomodule, caused by HOM excitation in the acceleration RF system of the continuouswave linac of SHINE.展开更多
Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering ...Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.51707102.
文摘The integration of distributed generations(solar power,wind power),energy storage devices,and electric vehicles,causes unpredictable disturbances in power grids.It has become a top priority to coordinate the distributed generations,loads,and energy storages in order to better facilitate the utilization of new energy.Therefore,a novel algorithm based on deep reinforcement learning,namely the deep PDWoLF-PHC(policy dynamics based win or learn fast-policy hill climbing)network(DPDPN),is proposed to allocate power order among the various generators.The proposed algorithm combines the decision mechanism of reinforcement learning with the prediction mechanism of a deep neural network to obtain the optimal coordinated control for the source-grid-load.Consequently it solves the problem brought by stochastic disturbances and improves the utilization rate of new energy.Simulations are conducted with the case of the improved IEEE two-area and a case in the Guangdong power grid.Results show that the adaptability and control performance of the power system are improved using the proposed algorithm as compared with using other existing strategies.
基金National Natural Science Foundation under Grant No. 51179093National Basic Research Program of China under Grant No. 2011CB013602Program for New Century Excellent Talents in University under Grant No.NCET-10-0531
文摘A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60725415, 60971066, and 61006028)the National High-Tech Program of China (Grant Nos. 2009AA01Z258 and 2009AA01Z260)the National Key Lab Foundation,China (Grant No. ZHD200904)
文摘On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses.
基金the National Natural Science Foundation of China (Nos.10132010 and 10072033).
文摘The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notch angles β is obtained. The angulardistributions of stress for several cases are plotted. Theself-similarity behavior between the higher order terms is noticed.It is found that the terms with higher Order can be neglected for theV-notch angle β>45°.
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金the Shahrood University of Technology for financial support of this study
文摘Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.
文摘This research paper deals with the identification of the best location of the Power System Stabilizers (PSS) and also the tuning of PSS parameters in order to improve the overall dynamic stability of multi machine power systems. The location of PSS is determined by identifying the critical modes and their corresponding first and second order eigenvalue sensitivities. In this formulation, sensitivity analysis of a particular mode can be performed with only its eigenvalues and their left and right eigenvectors. The simplicity and efficiency of this approach sharply contrast to the complexity of the traditional approach, where all eigenvalues and eigenvectors are required at the same time. The effectiveness of this method in selecting the optimum location for placement of PSSs is compared with the participation factor method. The proposed sensitivity theory used to identify the best PSS location in a five machine, eight bus El-Metwally and Malik System to increase the damping of both local and inter area modes for various operating conditions.
基金supported by the Frontier Research of Large Science Installation(2016YFA0401902)the Youth Innovation Promotion Association CAS(No.2018300)
文摘Shanghai high-repetition-rate XFEL and extreme light facility (SHINE), the first hard XFEL based on a superconducting accelerated structure in China, is now under development at the Shanghai Institute of Applied Physics, Chinese Academy of Sciences. In this paper, power losses caused by trapped longitudinal high-order modes (HOM), steady-state loss, and transient loss generated by untrapped HOMs in the 1.3-GHz SHINE cryomodule are investigated and calculated. The heat load generated by resistive wall wakefields is considered as well. Results are presented for power losses of every element in the 1.3-GHz cryomodule, caused by HOM excitation in the acceleration RF system of the continuouswave linac of SHINE.
文摘Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.