We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underes...We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underestimated by 52 % if thermal effects are omitted. Furthermore, an inconsistency arises when energy and temperature are simultaneously optimized by dynamic voltage scaling. Temperature is a limiting factor for future integrated circuits,and the thermal optimization approach can attain a temperature reduction of up to 12℃ with less than 1.8% energy penalty compared with the energy optimization one.展开更多
To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and intern...To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.展开更多
The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and...The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and prove that the condition number of the coefficient matrix is determined by the ratio of lengths and the included angle of the column vector, which could be adjusted by multiple and rotation transformation to turn the matrix to a well-conditioned one. Then partition the corresponding matrix of the GM(1,1) power model in accordance with the column vector and regulate the matrix to a well-conditioned one by multiple and rotation transformation of vectors, which completely solve the instability problem of the GM(1,1) power model. Numerical results show that vector transformation is a new method in studying the stability problem of the GM(1,1) power model.展开更多
A new power estimation method is proposed for base station(BS) in this paper.Based on this method,a software platform for power estimation is developed.The proposed method models power consumption on different abstrac...A new power estimation method is proposed for base station(BS) in this paper.Based on this method,a software platform for power estimation is developed.The proposed method models power consumption on different abstraction levels by splitting a typical base station into several basic components at different levels in the view of embedded system design.In particular,our focus is on baseband IC(Integrate Circuit) due to it's the dominant power consumer in small cells.Baseband power model is based on arithmetic computing costs of selected algorithms.All computing and storage costs are calibrated using algorithm complexity,hardware architecture,activity ratio,silicon technology,and overheads on all hierarchies.Micro architecture and IC technology are considered.The model enables power comparison of different types of base stations configured with different baseband algorithms,micro architectures,and ICs.The model also supports cellular operators in power estimation of different deployment strategies and transmission schemes.The model is verified by comparing power consumption with a real LTE base station.By exposing more configuration freedoms,the platform can be used for power estimation of current and future base stations.展开更多
The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test...The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test data recorded from the pull tests on anchoring bars used in different engineering projects. Based on the comparison of the mechanical characteristics of shaft anchors and prestressed tendons, a two-parameter combined-power function model for prestressed tendons is proposed. The bounded length derived from the model and the suggested values of the parameters are also proposed. Compared with the Gaussian model, the three-parameter combined-power model is more precise and simple in expression. Results also suggest that the bounded length calculated from the average stress method is not safe enough.展开更多
The study of the energy localization in f(R)theories of gravity has attracted much interest in recent years.In this paper,the vacuum solutions of the modified field equations for a power model of plane symmetric metri...The study of the energy localization in f(R)theories of gravity has attracted much interest in recent years.In this paper,the vacuum solutions of the modified field equations for a power model of plane symmetric metric are studied in metric f(R)gravity with the assumption of constant Ricci scalar.Next,we determine the energy-momentum complexes in f(R)theories of gravity for this spacetime for some important models.We also show that these models satisfy the stability and constant curvature conditions.展开更多
The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study propo...The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study proposes a multilayer PV power generation prediction model based on transfer learning to solve the problems of the lack of data on new PV bases and the low accuracy of PV power generation prediction.The proposed model,called DRAM,concatenates a dilated convolutional neural network(DCNN)module with a bidirectional long short-term memory(BiLSTM)module,and integrates an attention mechanism.First,the processed data are input into the DCNN layer,and the dilation convolution mechanism captures the spatial features of the wide sensory field of the input data.Subsequently,the temporal characteristics between the features are extracted in the BiLSTM layer.Finally,an attention mechanism is used to strengthen the key features by assigning weights to efficiently construct the relationship between the features and output variables.In addition,the power prediction accuracy of the new PV sites was improved by transferring the pre-trained model parameters to the new PV site prediction model.In this study,the pre-training of models using data from different source domains and the correlations between these pre-trained models and the target domain were analyzed.展开更多
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot...Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.展开更多
The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li...The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.展开更多
In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, ...In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, namely the Benchmark, input/output, Marion, Cristo-fri, Kroposki, Jones-Underwood and Hatziargyriou prediction models, which depend exclusively on environmental parameters. We then compared our linear model with these seven mathematical models in order to determine the most optimal prediction model. Our results show that the Hatziargyriou model is better in terms of accuracy for power prediction.展开更多
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these...With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.展开更多
Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which ca...Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which can, at one time or another, create disturbances or other phenomena can be generated. This is why we have set ourselves the objective of studying the FDTD modeling of the influence of direct lightning strikes on the power transmitted by a High-Voltage power line. To do this, we have implemented Kirchhoff’s laws to model the power transmitted by a High-Voltage power line in a steady state. Calculating the electromagnetic field generated by lightning requires the lightning current along the channel and its spatiotemporal distribution, the bi-exponential models and that of engineers were chosen and used to reproduce the physical phenomena best. Several works have been published in the literature and various mathematical models are proposed, to study the filamentous nature of power lines which has led to a more flexible modelling, based on the transmission line model, associated with the field theory developed from Maxwell’s equations, which explain the interaction between a lightning wave and a power transmission line. The resolution of the line equations in the lightning shock regime was the subject of the FDTD method to obtain the results in the spatio-temporal domain. Through this research, we are interested in the study of the spatiotemporal distribution of the lightning current wave to model the radiated electromagnetic field and to examine the influence of the overvoltage induced by the atmospheric discharge on the transportable power of a High Voltage AC Transmission line, for good selective protection to illuminate the parasites. 2D simulations based on proposed models were developed as well as the verification of the consistency of the different models, by comparing the fractal dimensions of the results of our program with those of the figures obtained experimentally. The aspects developed in this article could have direct implications in practical applications in the engineering and design of high-voltage transmission systems.展开更多
In this paper,a new micro-creep model of salt rock is proposed based on a linear parallel bonded model(LPBM)using the two-dimensional particle flow code(PFC2D).The power function weakening form is assumed to describe ...In this paper,a new micro-creep model of salt rock is proposed based on a linear parallel bonded model(LPBM)using the two-dimensional particle flow code(PFC2D).The power function weakening form is assumed to describe the variation of the parallel bonded diameter(PBD)over time.By comparing with the parallel-bonded stress corrosion(PSC)model,a smaller stress fluctuation and smoother creep strain−time curves can be obtained by this power function model at the same stress level.The validity and adaptability of the model to simulate creep deformation of salt rock are verified through comparing the laboratory creep test curves and the Burgers model fitting result.The numerical results reveal that this model can be capable of capturing the creep deformation and damage behavior from the laboratory observations.展开更多
Influence of identical applied initial pressures on the radial surfaces of a hollow cylinder which is compose of materials with first power hypo-elastic constitutive model was investigated.The basic equations of the p...Influence of identical applied initial pressures on the radial surfaces of a hollow cylinder which is compose of materials with first power hypo-elastic constitutive model was investigated.The basic equations of the problem were built up based on the framework of piecewise homogeneous body model with the use of three-dimensional linearized theory of elastic waves in initially stressed bodies(TLTEWISB).With the method proposed previously,this problem was then solved numerically.Moreover,the dispersion group velocity of the lowest order mode with different initial pressures was also studied.It can be concluded that the initial pressure and the geometry parameters will induce considerable changes of different degrees in dispersive relation between phase velocity and wave number in opposite trend(positive in initial pressure and negative in thickness).展开更多
This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power ...This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power calculations for the score test of heteroscedasticity in European rabbit data (Ratkowsky, 1983). Simulation studies are presented which indicate that the asymptotic approximation to the finite-sample situation is good over a wide range of parameter configurations.展开更多
Decarbonizing the power sector is a necessary step towards a low-carbon future. Interconnecting power systems on different continents could be a method to contribute to such a future, by utilizing highly efficient ren...Decarbonizing the power sector is a necessary step towards a low-carbon future. Interconnecting power systems on different continents could be a method to contribute to such a future, by utilizing highly efficient renewable resources around the globe, while simultaneously providing additional benefits of power system integration. In this paper, we describe the process of constructing and simulating a global interconnected power system model with high technical and temporal resolution. Being the first of its kind on the global scale, this paper is designed to showcase the proof of concept as an intermediate step to a high resolution global model, by integrating an existing European power system model with the North-American continent. The work to date has been focused on testing the methodology and building up necessary knowledge to realistically simulate the functionality of a possible future global grid. Some initial results are analysed to support the viability of the model and the concept in general. Furthermore, key factors influencing the development and optimal performance of the global interconnected power system model are identified.展开更多
文摘We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underestimated by 52 % if thermal effects are omitted. Furthermore, an inconsistency arises when energy and temperature are simultaneously optimized by dynamic voltage scaling. Temperature is a limiting factor for future integrated circuits,and the thermal optimization approach can attain a temperature reduction of up to 12℃ with less than 1.8% energy penalty compared with the energy optimization one.
文摘To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(20120143110001)the General Education Program Requirements in the Humanities and Social Sciences of China(11YJC630155)the Youth Foundation of Hubei Province of China(Q20121203)
文摘The morbidity problem of the GM(1,1) power model in parameter identification is discussed by using multiple and rotation transformation of vectors. Firstly we consider the morbidity problem of the special matrix and prove that the condition number of the coefficient matrix is determined by the ratio of lengths and the included angle of the column vector, which could be adjusted by multiple and rotation transformation to turn the matrix to a well-conditioned one. Then partition the corresponding matrix of the GM(1,1) power model in accordance with the column vector and regulate the matrix to a well-conditioned one by multiple and rotation transformation of vectors, which completely solve the instability problem of the GM(1,1) power model. Numerical results show that vector transformation is a new method in studying the stability problem of the GM(1,1) power model.
基金The finance supporting from National High Technical Research and Development Program of China(863program)2014AA01A705
文摘A new power estimation method is proposed for base station(BS) in this paper.Based on this method,a software platform for power estimation is developed.The proposed method models power consumption on different abstraction levels by splitting a typical base station into several basic components at different levels in the view of embedded system design.In particular,our focus is on baseband IC(Integrate Circuit) due to it's the dominant power consumer in small cells.Baseband power model is based on arithmetic computing costs of selected algorithms.All computing and storage costs are calibrated using algorithm complexity,hardware architecture,activity ratio,silicon technology,and overheads on all hierarchies.Micro architecture and IC technology are considered.The model enables power comparison of different types of base stations configured with different baseband algorithms,micro architectures,and ICs.The model also supports cellular operators in power estimation of different deployment strategies and transmission schemes.The model is verified by comparing power consumption with a real LTE base station.By exposing more configuration freedoms,the platform can be used for power estimation of current and future base stations.
基金This paper is supported by the Foundation for Research Project of ChinaCommunications Second Highway Survey Design and ResearchInstitute .
文摘The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test data recorded from the pull tests on anchoring bars used in different engineering projects. Based on the comparison of the mechanical characteristics of shaft anchors and prestressed tendons, a two-parameter combined-power function model for prestressed tendons is proposed. The bounded length derived from the model and the suggested values of the parameters are also proposed. Compared with the Gaussian model, the three-parameter combined-power model is more precise and simple in expression. Results also suggest that the bounded length calculated from the average stress method is not safe enough.
基金Supported in part by Islamic Azad University-Kashan Branch
文摘The study of the energy localization in f(R)theories of gravity has attracted much interest in recent years.In this paper,the vacuum solutions of the modified field equations for a power model of plane symmetric metric are studied in metric f(R)gravity with the assumption of constant Ricci scalar.Next,we determine the energy-momentum complexes in f(R)theories of gravity for this spacetime for some important models.We also show that these models satisfy the stability and constant curvature conditions.
基金Science and Technology Project of State Grid Ningxia Electric Power Co.,Ltd Research on Distributed Photovoltaic Fine Power Prediction Technology for Day-Ahead Scheduling,5229NX230007.
文摘The accurate prediction of photovoltaic(PV)power generation is an important basis for hybrid grid scheduling.With the expansion of the scale of PV power plants and the popularization of distributed PV,this study proposes a multilayer PV power generation prediction model based on transfer learning to solve the problems of the lack of data on new PV bases and the low accuracy of PV power generation prediction.The proposed model,called DRAM,concatenates a dilated convolutional neural network(DCNN)module with a bidirectional long short-term memory(BiLSTM)module,and integrates an attention mechanism.First,the processed data are input into the DCNN layer,and the dilation convolution mechanism captures the spatial features of the wide sensory field of the input data.Subsequently,the temporal characteristics between the features are extracted in the BiLSTM layer.Finally,an attention mechanism is used to strengthen the key features by assigning weights to efficiently construct the relationship between the features and output variables.In addition,the power prediction accuracy of the new PV sites was improved by transferring the pre-trained model parameters to the new PV site prediction model.In this study,the pre-training of models using data from different source domains and the correlations between these pre-trained models and the target domain were analyzed.
文摘Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.
文摘The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.
文摘In this paper, we present a study on the prediction of the power produced by the 33 MWp photovoltaic power plant at Zagtouli in Burkina-Faso, as a function of climatic factors. We identified models in the literature, namely the Benchmark, input/output, Marion, Cristo-fri, Kroposki, Jones-Underwood and Hatziargyriou prediction models, which depend exclusively on environmental parameters. We then compared our linear model with these seven mathematical models in order to determine the most optimal prediction model. Our results show that the Hatziargyriou model is better in terms of accuracy for power prediction.
基金supported by the National Science Foundation of China under Grant 62271062 and 62071063by the Zhijiang Laboratory Open Project Fund 2020LCOAB01。
文摘With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.
文摘Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which can, at one time or another, create disturbances or other phenomena can be generated. This is why we have set ourselves the objective of studying the FDTD modeling of the influence of direct lightning strikes on the power transmitted by a High-Voltage power line. To do this, we have implemented Kirchhoff’s laws to model the power transmitted by a High-Voltage power line in a steady state. Calculating the electromagnetic field generated by lightning requires the lightning current along the channel and its spatiotemporal distribution, the bi-exponential models and that of engineers were chosen and used to reproduce the physical phenomena best. Several works have been published in the literature and various mathematical models are proposed, to study the filamentous nature of power lines which has led to a more flexible modelling, based on the transmission line model, associated with the field theory developed from Maxwell’s equations, which explain the interaction between a lightning wave and a power transmission line. The resolution of the line equations in the lightning shock regime was the subject of the FDTD method to obtain the results in the spatio-temporal domain. Through this research, we are interested in the study of the spatiotemporal distribution of the lightning current wave to model the radiated electromagnetic field and to examine the influence of the overvoltage induced by the atmospheric discharge on the transportable power of a High Voltage AC Transmission line, for good selective protection to illuminate the parasites. 2D simulations based on proposed models were developed as well as the verification of the consistency of the different models, by comparing the fractal dimensions of the results of our program with those of the figures obtained experimentally. The aspects developed in this article could have direct implications in practical applications in the engineering and design of high-voltage transmission systems.
基金Projects(51621006,51874274)supported by the National Natural Science Foundation of ChinaProject(2018YFC0808401)supported by the National Key Research and Development Program of China
文摘In this paper,a new micro-creep model of salt rock is proposed based on a linear parallel bonded model(LPBM)using the two-dimensional particle flow code(PFC2D).The power function weakening form is assumed to describe the variation of the parallel bonded diameter(PBD)over time.By comparing with the parallel-bonded stress corrosion(PSC)model,a smaller stress fluctuation and smoother creep strain−time curves can be obtained by this power function model at the same stress level.The validity and adaptability of the model to simulate creep deformation of salt rock are verified through comparing the laboratory creep test curves and the Burgers model fitting result.The numerical results reveal that this model can be capable of capturing the creep deformation and damage behavior from the laboratory observations.
基金Project(51378463)supported by National Natural Science Foundation of China
文摘Influence of identical applied initial pressures on the radial surfaces of a hollow cylinder which is compose of materials with first power hypo-elastic constitutive model was investigated.The basic equations of the problem were built up based on the framework of piecewise homogeneous body model with the use of three-dimensional linearized theory of elastic waves in initially stressed bodies(TLTEWISB).With the method proposed previously,this problem was then solved numerically.Moreover,the dispersion group velocity of the lowest order mode with different initial pressures was also studied.It can be concluded that the initial pressure and the geometry parameters will induce considerable changes of different degrees in dispersive relation between phase velocity and wave number in opposite trend(positive in initial pressure and negative in thickness).
基金Supported by SSFC(04BTJ002),the National Natural Science Foundation of China(10371016) and the Post-Doctorial Grant in Southeast University.
文摘This paper presents an approach for estimating power of the score test, based on an asymptotic approximation to the power of the score test under contiguous alternatives. The method is applied to the problem of power calculations for the score test of heteroscedasticity in European rabbit data (Ratkowsky, 1983). Simulation studies are presented which indicate that the asymptotic approximation to the finite-sample situation is good over a wide range of parameter configurations.
文摘Decarbonizing the power sector is a necessary step towards a low-carbon future. Interconnecting power systems on different continents could be a method to contribute to such a future, by utilizing highly efficient renewable resources around the globe, while simultaneously providing additional benefits of power system integration. In this paper, we describe the process of constructing and simulating a global interconnected power system model with high technical and temporal resolution. Being the first of its kind on the global scale, this paper is designed to showcase the proof of concept as an intermediate step to a high resolution global model, by integrating an existing European power system model with the North-American continent. The work to date has been focused on testing the methodology and building up necessary knowledge to realistically simulate the functionality of a possible future global grid. Some initial results are analysed to support the viability of the model and the concept in general. Furthermore, key factors influencing the development and optimal performance of the global interconnected power system model are identified.