期刊文献+
共找到2,586篇文章
< 1 2 130 >
每页显示 20 50 100
Application and Performance Optimization of SLHS-TCN-XGBoost Model in Power Demand Forecasting
1
作者 Tianwen Zhao Guoqing Chen +1 位作者 Cong Pang Piyapatr Busababodhin 《Computer Modeling in Engineering & Sciences》 2025年第6期2883-2917,共35页
Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimens... Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimensionality reduction,temporal modeling,and robust prediction,especially for multi-day forecasting.A novel hybrid model,SLHS-TCN-XGBoost,is proposed for power demand forecasting,leveraging SLHS(dimensionality reduction),TCN(temporal feature learning),and XGBoost(ensemble prediction).Applied to the three-year electricity load dataset of Seoul,South Korea,the model’s MAE,RMSE,and MAPE reached 112.08,148.39,and 2%,respectively,which are significantly reduced in MAE,RMSE,and MAPE by 87.37%,87.35%,and 87.43%relative to the baseline XGBoost model.Performance validation across nine forecast days demonstrates superior accuracy,with MAPE as low as 0.35%and 0.21%on key dates.Statistical Significance tests confirm significant improvements(p<0.05),with the highest MAPE reduction of 98.17%on critical days.Seasonal and temporal error analyses reveal stable performance,particularly in Quarter 3 and Quarter 4(0.5%,0.3%)and nighttime hours(<1%).Robustness tests,including 5-fold cross-validation and Various noise perturbations,confirm the model’s stability and resilience.The SLHS-TCN-XGBoost model offers an efficient and reliable solution for power demand forecasting,with future optimization potential in data preprocessing,algorithm integration,and interpretability. 展开更多
关键词 power demand forecasting SLHS-TCN-XGBoost ensemble learning prediction accuracy noise robustness
在线阅读 下载PDF
Improved grey-based approach for power demand forecasting
2
作者 林佳木 《Journal of Chongqing University》 CAS 2006年第4期229-234,共6页
Grey theory is a multidisciplinary and generic theory to cope with systems of poor or deficient information. We proposed in this paper an improved grey method (GM) to overcome the disadvantages of the general GM(1,1).... Grey theory is a multidisciplinary and generic theory to cope with systems of poor or deficient information. We proposed in this paper an improved grey method (GM) to overcome the disadvantages of the general GM(1,1). In the improved GM(1,1), a new background value formula is deduced and Markov-chain sign estimation is imbedded into the residual modification model. We tested the efficiency and accuracy of our model by applying it to the power demand forecasting in Taiwan. Experimental results demonstrate the new method has obviously a higher prediction accuracy than the general model. 展开更多
关键词 grey theory improved GM(1 1) Markov-chain power demand forecasting
在线阅读 下载PDF
Design Optimization and Operating Performance of S-CO_(2) Brayton Cycle under Fluctuating Ambient Temperature and Diverse Power Demand Scenarios 被引量:5
3
作者 YANG Jingze YANG Zhen DUAN Yuanyuan 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期190-206,共17页
The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the conce... The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the concentrated solar power plant with thermal energy storage is usually located in drought area and used to provide a dispatchable power output,the S-CO_(2) Brayton cycle has to operate under fluctuating ambient temperature and diverse power demand scenarios.In addition,the cycle design condition will directly affect the off-design performance.In this work,the combined effects of design condition,and distributions of ambient temperature and power demand on the cycle operating performance are analyzed,and the off-design performance maps are proposed for the first time.A cycle design method with feedback mechanism of operating performance under varied ambient temperature and power demand is introduced innovatively.Results show that the low design value of compressor inlet temperature is not conductive to efficient operation under low loads and sufficient output under high ambient temperatures.The average yearly efficiency is most affected by the average power demand,while the load cover factor is significantly influenced by the average ambient temperature.With multi-objective optimization,the optimal solution of designed compressor inlet temperature is close to the minimum value of35℃ in Delingha with low ambient temperature,while reaches 44.15℃ in Daggett under the scenario of high ambient temperature,low average power demand,long duration and large value of peak load during the peak temperature period.If the cycle designed with compressor inlet temperature of 35℃ instead of 44.15℃ in Daggett under light industry power demand,the reduction of load cover factor will reach 0.027,but the average yearly efficiency can barely be improved. 展开更多
关键词 supercritical CO_(2)Brayton cycle ambient temperature fluctuating power demand scenarios design optimization off-design performance
原文传递
Reducing the impact of dynamic wireless charging of electric vehicles on the grid through renewable power integration
4
作者 K.Qiu H.Ribberink E.Entchev 《DeCarbon》 2025年第1期39-46,共8页
Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems insta... Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems installed on roadways,they constitute a charging infrastructure or electrified roads(eRoads)that have many advantages.For instance,the large battery size of heavy-duty EVs can significantly be downsized due to charging-whiledriving.However,a high power demand of the DWC system,especially during traffic rush periods,could lead to voltage instability in the grid and undesirable power demand curves.In this paper,a model for the power demand is developed to predict the DWC system's power demand at various levels of EV penetration rate.The DWC power demand profile in the chosen 550 km section of a major highway in Canada is simulated.Solar photovoltaic(PV)panels are integrated with the DWC,and the integrated system is optimized to mitigate the peak power demand on the electrical grid.With solar panels of 55,000 kW rated capacity installed along roadsides in the study region,the peak power demand on the electrical grid is reduced from 167.5 to 136.1 MW or by 18.7%at an EV penetration rate of 30%under monthly average daily solar radiation in July.It is evidenced that solar PV power has effectively smoothed the peak power demand on the grid.Moreover,the locally generated renewable power could help ease off expensive grid upgrades and expansions for the eRoad.Also,the economic feasibility of the solar PV integrated DWC system is assessed using cost analysis metrics. 展开更多
关键词 power demand Electric vehicles Dynamic wireless charging Renewable energy Solar PV Long-haul trucks
暂未订购
Daily power demand prediction for buildings at a large scale using a hybrid of physics-based model and generative adversarial network 被引量:3
5
作者 Chenlu Tian Yunyang Ye +3 位作者 Yingli Lou Wangda Zuo Guiqing Zhang Chengdong Li 《Building Simulation》 SCIE EI CSCD 2022年第9期1685-1701,共17页
Power demand prediction for buildings at a large scale is required for power grid operation.The bottom-up prediction method using physics-based models is popular,but has some limitations such as a heavy workload on mo... Power demand prediction for buildings at a large scale is required for power grid operation.The bottom-up prediction method using physics-based models is popular,but has some limitations such as a heavy workload on model creation and long computing time.Top-down methods based on data driven models are fast,but less accurate.Considering the similarity of power demand patterns of single buildings and the superiority of generative adversarial network(GAN),this paper proposes a new method(E-GAN),which combines a physics-based model(EnergyPlus)and a data-driven model(GAN),to predict the daily power demand for buildings at a large scale.The new E-GAN method selects a small number of typical buildings and utilizes EnergyPlus models to predict their power demands.Utilizing the prediction for those typical buildings,the GAN then is adopted to forecast the power demands of a large number of buildings.To verify the proposed method,the E-GAN is used to predict 24-hour power demands for a set of residential buildings.The results show that(1)4.3%of physics-based models in each building category are required to ensure the prediction accuracy;(2)compared with the physics-based model,the E-GAN can predict power demand accurately with only 5%error(measured by mean absolute percentage error,MAPE)while using only approximately 9%of the computing time;and(3)compared with data-driven models(e.g.,support vector regression,extreme learning machine,and polynomial regression model),E-GAN demonstrates at least 60%reduction in prediction error measured by MAPE. 展开更多
关键词 large-scale simulation power demand generative adversarial networks building energy model
原文传递
RS-SVM forecasting model and power supply-demand forecast 被引量:4
6
作者 杨淑霞 曹原 +1 位作者 刘达 黄陈锋 《Journal of Central South University》 SCIE EI CAS 2011年第6期2074-2079,共6页
A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there a... A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there are strong complementarities between two models. Firstly, the rough set was used to reduce the condition attributes, then to eliminate the attributes that were redundant for the forecast, Secondly, it adopted the minimum condition attributes obtained by reduction and the corresponding original data to re-form a new training sample, which only kept the important attributes affecting the forecast accuracy. Finally, it studied and trained the SVM with the training samples after reduction, inputted the test samples re-formed by the minimum condition attributes and the corresponding original data, and then got the mapping relationship model between condition attributes and forecast variables after testing it. This model was used to forecast the power supply and demand. The results show that the average absolute error rate of power consumption of the whole society and yearly maximum load are 14.21% and 13.23%, respectively, which indicates that the RS-SVM forecast model has a higher degree of accuracy. 展开更多
关键词 rough set (RS) support vector machine (SVM) power supply and demand FORECAST
在线阅读 下载PDF
POWER SUPPLY AND DEMAND WILL ASSUME A VERY VIGOROUS SITUTION IN THE LATTER THREE YEARS OF THE 10TH FIVE-YEAR PLAN PERIOD 被引量:1
7
作者 Wu Jingru 《Electricity》 2003年第1期34-38,共5页
The paper analyzes the present situation of power supply and demand based on full and accurate data.Although the electricity generation in 2003 will reach the target of the 10"Five-year Plan,but the scale of powe... The paper analyzes the present situation of power supply and demand based on full and accurate data.Although the electricity generation in 2003 will reach the target of the 10"Five-year Plan,but the scale of power sources construction is severely insufficient.The situation of supply and demand will be very pressing in the latter three years of the 10"Five-year Plan.Therefore,an urgent task is to speedily start constructing a batch of medium and large generation projects. 展开更多
关键词 Load forecast power sources construction power supply and demand
在线阅读 下载PDF
Power Market Analyses on 2001 and Demand Forecast for 2002
8
作者 国家电力公司战略研究与规划部 国家电力公司动力经济研究中心 《Electricity》 2002年第2期14-18,共5页
Based on the analysis on economic situation in China in 2001, the paperdiscusses power supply and demand features nationwide and by regions andprovinces, present estimation of power supply and demand in 2002. In concl... Based on the analysis on economic situation in China in 2001, the paperdiscusses power supply and demand features nationwide and by regions andprovinces, present estimation of power supply and demand in 2002. In conclusion,the paper presents suggestions to overcome difficulties on capital funds andtechniques.[ 展开更多
关键词 power market power supply and demand FORECAST
在线阅读 下载PDF
Analysis on the Situation of Power Supply and Demand in Shandong
9
作者 Sun Wei Department of Development Planning, Shandong Electric Power Corporation Jia Yulu 《Electricity》 2008年第1期40-42,共3页
In the first half of 2007, the power industry in Shandongprovince continued to maintain a rapid growth momentum.The gross electricity consumption amounted to 121.25 TWh,14.4% higher over that in the same period of las... In the first half of 2007, the power industry in Shandongprovince continued to maintain a rapid growth momentum.The gross electricity consumption amounted to 121.25 TWh,14.4% higher over that in the same period of last year. The totalinstalled capacity reached 53.29 GW. It was expected that bythe end of 2007, the gross electricity consumption in Shan-dong would reach 260 TWh, increasing by 14.4% on ayear-on-year basis; the maximum load would reach 40. 展开更多
关键词 Analysis on the Situation of power Supply and demand in Shandong HIGH
在线阅读 下载PDF
Predictive Analveses on Power Supply and Demand in the 10th Five-Year Plan Period
10
作者 Zhu Chengzhang 《Electricity》 2002年第2期19-24,共6页
The paper analyzes the un certainty on power supply and demandforecast during the 10th Five-year Plan period and sug gests measures to beemp lo ye d.
关键词 10th Five-year Plan power supply and demand supply anddemand balance FORECAST
在线阅读 下载PDF
碳中和背景下基于边缘节点技术的电力系统转型研究 被引量:2
11
作者 李金 高红亮 +1 位作者 刘科孟 谢虎 《电测与仪表》 北大核心 2025年第4期10-18,共9页
电力系统接入多种新能源后,主要采用源-荷平衡技术,进行电力系统转型,使得转型后系统碳排放量过高。因此,提出碳中和背景下基于边缘节点技术的电力系统转型研究。根据电力系统历史数据建立平稳时间序列,再通过指数法平滑法预测中长期电... 电力系统接入多种新能源后,主要采用源-荷平衡技术,进行电力系统转型,使得转型后系统碳排放量过高。因此,提出碳中和背景下基于边缘节点技术的电力系统转型研究。根据电力系统历史数据建立平稳时间序列,再通过指数法平滑法预测中长期电力需求,作为系统转型设计的基础。在碳中和背景下,以最小新能源弃电量为目标,构建新型电力系统规划模型,并提出碳排放和电力平衡约束。运用边缘节点技术,将整个配电系统划分为多个孤岛,每个孤岛内采用改进粒子群算法对电力任务进行合理分配,形成以源-网-荷-储协调规划为核心的新型电力系统。最后,在大数据理论的支撑下,明确新型电力系统运行模式。应用分析结果表明:运用所提转型方法得出的新型电力系统,与转型前电力系统相比,碳排放量减少了42.86%,满足碳中和发展目标。所提系统经过了曼-肯德尔法的检验,具有一定的有效性与可靠性,能够为电力系统转型提供借鉴的应用价值。 展开更多
关键词 碳中和 边缘节点技术 新型电力系统 电力需求预测 协作分配 可再生能源
在线阅读 下载PDF
含电转气碳捕集协同热电联供运行的综合能源系统优化调度策略 被引量:1
12
作者 张彬桥 冉远航 张磊 《电测与仪表》 北大核心 2025年第5期11-21,共11页
为实现我国碳达峰和碳中和的战略目标,探索可再生能源低碳高效利用刻不容缓。热电联产机组以热定电的工作模式对可再生能源的消纳提出了挑战。为此,提出电转气,碳捕集系统,分布式电源和热电联产机组协同运行框架并分析其耦合特性。构建... 为实现我国碳达峰和碳中和的战略目标,探索可再生能源低碳高效利用刻不容缓。热电联产机组以热定电的工作模式对可再生能源的消纳提出了挑战。为此,提出电转气,碳捕集系统,分布式电源和热电联产机组协同运行框架并分析其耦合特性。构建以该框架为基础的综合能源系统优化调度模型,并建立用户需求响应模型。随后,以综合能源系统侧为上层优化模型主体,用户侧为下层优化模型主体提出基于主从博弈的双层优化模型及其求解方法。算例表明,所提模型及策略不但能够有效的提高可再生能源的消纳,减少热电联供机组的碳排放,还降低了系统的运行成本和用户的购能成本,提高了用户的用能效益和系统的经济效益。 展开更多
关键词 热电联产 碳捕集 需求响应 可再生能源消纳 双层模型
在线阅读 下载PDF
考虑多重不确定性的虚拟电厂经济优化调度
13
作者 黄正伟 李熠俊 +3 位作者 魏业文 陈庆 吕荣胜 翁世洲 《太阳能学报》 北大核心 2025年第7期196-205,共10页
针对现有能源结构调节能力不足而产生风光消纳率低的问题,提出考虑多重不确定性的虚拟电厂经济优化调度模型。考虑虚拟电厂风光出力的不确定性和相关性,利用拉丁超立方抽样方法构建多个风光出力场景,采用改进的迭代自组织数据分析算法... 针对现有能源结构调节能力不足而产生风光消纳率低的问题,提出考虑多重不确定性的虚拟电厂经济优化调度模型。考虑虚拟电厂风光出力的不确定性和相关性,利用拉丁超立方抽样方法构建多个风光出力场景,采用改进的迭代自组织数据分析算法缩减得出典型场景;根据日前预测所得风光出力值制定虚拟电厂日内的动态分时电价以解决电价不确定性,并通过动态分时电价下的价格型需求响应充分调动需求侧资源;在此基础上建立以多能互补虚拟电厂交易日内总运行成本最小化的经济优化调度模型,采用雪消融算法对该模型优化求解;通过算例仿真,结果表明所构建的模型能提高多能互补虚拟电厂运行的经济性。 展开更多
关键词 虚拟电厂 需求响应 不确定性 场景生成 优化调度
原文传递
电力行业人才需求与职业院校专业设置匹配分析 被引量:3
14
作者 向保林 俞玲 陶世祺 《中国职业技术教育》 北大核心 2025年第8期5-18,40,共15页
随着智能电网、分布式发电等新兴技术的发展,电力行业对技术技能人才的需求呈现新变化。研究发现,电力行业技术技能人才供给存在较大缺口,专业设置与行业发展相对滞后,专业布局与产业布局契合度有待提高。为此,需优化专业布局、扩大人... 随着智能电网、分布式发电等新兴技术的发展,电力行业对技术技能人才的需求呈现新变化。研究发现,电力行业技术技能人才供给存在较大缺口,专业设置与行业发展相对滞后,专业布局与产业布局契合度有待提高。为此,需优化专业布局、扩大人才培养规模、调整人才培养目标与规格、深化产教融合校企合作等,以推进我国电力行业高质量发展。 展开更多
关键词 职业院校 电力行业 行业人才需求 专业设置 匹配分析
原文传递
考虑双侧响应与碳捕集的虚拟电厂低碳经济调度 被引量:1
15
作者 李军祥 张三杰 邵馨平 《上海理工大学学报》 北大核心 2025年第1期79-88,共10页
随着可再生能源例如风电、光伏等并网规模的不断增加,电力系统的调峰压力逐渐增大,碳捕集电厂不仅能够降低系统碳排放量,也能够减轻系统调峰压力,在电力系统中得到广泛应用。在此背景下,引入了综合灵活运行碳捕集电厂来调动供给侧灵活... 随着可再生能源例如风电、光伏等并网规模的不断增加,电力系统的调峰压力逐渐增大,碳捕集电厂不仅能够降低系统碳排放量,也能够减轻系统调峰压力,在电力系统中得到广泛应用。在此背景下,引入了综合灵活运行碳捕集电厂来调动供给侧灵活响应资源,并深入分析了其综合灵活运行方式的特性,同时考虑需求响应来充分调动需求侧的灵活性资源,在此基础上建立考虑供需双侧响应与综合灵活运行碳捕集的虚拟电厂低碳经济调度模型。基于Matlab调用YALMIP工具箱和GUROBI求解器对模型进行仿真验证。算例表明,所提模型能进一步减少“弃光弃风”和碳排放,缓解调峰压力,能够为电力系统低碳经济调度提供参考。 展开更多
关键词 碳捕集电厂 综合灵活运行方式 需求响应 碳减排 虚拟电厂
在线阅读 下载PDF
AI4City:人工智能赋能城市的理论框架 被引量:1
16
作者 吴志强 《国际大都市发展研究(中英文)》 2025年第2期5-19,共15页
系统阐述AI4City(人工智能赋能城市)的理论框架,探讨其作为新一代城市发展形态的定义、发展历程、核心要素、技术架构、推进模式及未来展望。AI4City依托新一代人工智能技术,通过数据驱动的学习能力、规律发现、未来推演和智能自组织等... 系统阐述AI4City(人工智能赋能城市)的理论框架,探讨其作为新一代城市发展形态的定义、发展历程、核心要素、技术架构、推进模式及未来展望。AI4City依托新一代人工智能技术,通过数据驱动的学习能力、规律发现、未来推演和智能自组织等核心要素,全面赋能城市生产、生活和生态,推动城市向自组织、可学习、可迭代的高度智能化方向发展。与传统智慧城市及人工智能城市相比,AI4City强调技术伦理与社会责任,确保人工智能的发展符合人类价值观,为城市可持续发展提供新思路。 展开更多
关键词 AI4City 人工智能城市 智慧城市 需求驱动创新 智能治理
在线阅读 下载PDF
基于信息间隙决策理论的虚拟电厂低碳需求响应调度模型 被引量:2
17
作者 李军祥 陈鸣 邵馨平 《中国管理科学》 北大核心 2025年第4期345-356,共12页
“30·60”双碳背景下,电力系统低碳化可从低碳政策和低碳技术两个方面加以实现。本文综合采用低碳技术与政策两种手段,探究碳减排技术、碳税机制与需求响应机制对虚拟电厂低碳调度的影响,并在此基础上,考虑可再生能源的不确定性下... “30·60”双碳背景下,电力系统低碳化可从低碳政策和低碳技术两个方面加以实现。本文综合采用低碳技术与政策两种手段,探究碳减排技术、碳税机制与需求响应机制对虚拟电厂低碳调度的影响,并在此基础上,考虑可再生能源的不确定性下虚拟电厂运营商不同风险态度对调度决策的影响。首先,本文考虑不同的用户特性构建需求响应模型,以电力系统运营商利润最大化为目标构建确定性低碳调度模型。其次,考虑风光出力的不确定性,采用信息间隙决策理论描述不确定变量,构建鲁棒模型与机会模型以探究虚拟电厂运营商不同风险态度下的调度方案,为系统动态运行提供指导意见。最后,采用蒙特卡洛模拟方法生成初始风光出力和用户负荷数据,利用Gurobi优化软件进行仿真模拟。结果表明,所提模型能兼顾系统低碳性、经济性与稳定性,制定合理的碳税价格有利于在保护虚拟电厂运营商经济效益的同时提高社会环境效益,采用科学的态度决定虚拟电厂运营商对于风光不确定性的态度,才能充分发挥鲁棒模型与机会模型的优势。 展开更多
关键词 信息间隙决策理论 低碳技术 需求响应 Gurobi 虚拟电厂
原文传递
A Study of Power Sources Optimization in Guangdong
18
作者 陈志刚 郑忠信 +1 位作者 黄仕云 邓雪原 《Electricity》 2001年第4期16-21,共6页
The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersource... The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[ 展开更多
关键词 power sources optimization power demand and supply sensibility analysis planning
在线阅读 下载PDF
面向新型电力系统电力平衡的负荷响应管理综述 被引量:6
19
作者 姜婷玉 陶劲宇 +3 位作者 李亚平 储晨阳 王珂 鞠平 《电力自动化设备》 北大核心 2025年第2期11-23,共13页
新能源占比逐渐提高的新型电力系统中,电力平衡压力凸显,利用规模庞大、响应灵活的负荷向系统提供调节资源能够有效提升系统平衡能力。因此,在全面梳理负荷响应具体进展的基础上,对负荷响应能力的进一步管理做出展望。概述新型电力系统... 新能源占比逐渐提高的新型电力系统中,电力平衡压力凸显,利用规模庞大、响应灵活的负荷向系统提供调节资源能够有效提升系统平衡能力。因此,在全面梳理负荷响应具体进展的基础上,对负荷响应能力的进一步管理做出展望。概述新型电力系统中面对的电力平衡新问题,并对负荷响应新特征进行分析。围绕响应运营考虑、收益机制设计、关键响应技术和参与模式扩展4个层面,递进地对负荷响应管理进行综述。针对现阶段平衡过程中的实际挑战,提出对新型电力系统负荷响应管理能力深入挖掘的未来展望,包括跨区负荷响应研究、理性人视角下的负荷响应、有限信息和强随机性下的主体决策3个方面。 展开更多
关键词 负荷响应管理 电力平衡 需求响应 新型电力系统 机制设计
在线阅读 下载PDF
考虑旋转潮流控制器和需求响应的配电网新能源承载力评估方法
20
作者 颜湘武 李洋洋 +3 位作者 卢俊达 郭美辰 杜春林 吴鸣 《电力系统及其自动化学报》 北大核心 2025年第2期58-67,77,共11页
针对高比例分布式新能源接入导致配电网系统能量出现时空维度下的不平衡问题,提出考虑旋转潮流控制器和需求响应的配电网新能源承载能力评估方法。首先,构建新型电力系统下的旋转潮流控制器和需求响应模型。其次,建立分布式新能源承载... 针对高比例分布式新能源接入导致配电网系统能量出现时空维度下的不平衡问题,提出考虑旋转潮流控制器和需求响应的配电网新能源承载能力评估方法。首先,构建新型电力系统下的旋转潮流控制器和需求响应模型。其次,建立分布式新能源承载力的双层优化模型,在该模型中,上层旨在最大化配电网对新能源的承载能力,优化新能源接入容量;下层旨在最小化系统的综合运行费用,调节各设备运行出力。然后,采用基于灰狼算法和二阶锥规划的混合优化算法进行求解,通过引入二阶锥松弛将优化问题转化为混合整数二阶锥规划问题。最后,采用IEEE33节点系统作为仿真算例,对不同场景下的承载力双层优化模型进行分析验证。结果表明,考虑需求响应措施和旋转潮流控制器的投入可以提高配电网的新能源承载力水平。 展开更多
关键词 分布式新能源 旋转潮流控制器 需求响应 承载力 二阶锥规划
在线阅读 下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部