Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimens...Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimensionality reduction,temporal modeling,and robust prediction,especially for multi-day forecasting.A novel hybrid model,SLHS-TCN-XGBoost,is proposed for power demand forecasting,leveraging SLHS(dimensionality reduction),TCN(temporal feature learning),and XGBoost(ensemble prediction).Applied to the three-year electricity load dataset of Seoul,South Korea,the model’s MAE,RMSE,and MAPE reached 112.08,148.39,and 2%,respectively,which are significantly reduced in MAE,RMSE,and MAPE by 87.37%,87.35%,and 87.43%relative to the baseline XGBoost model.Performance validation across nine forecast days demonstrates superior accuracy,with MAPE as low as 0.35%and 0.21%on key dates.Statistical Significance tests confirm significant improvements(p<0.05),with the highest MAPE reduction of 98.17%on critical days.Seasonal and temporal error analyses reveal stable performance,particularly in Quarter 3 and Quarter 4(0.5%,0.3%)and nighttime hours(<1%).Robustness tests,including 5-fold cross-validation and Various noise perturbations,confirm the model’s stability and resilience.The SLHS-TCN-XGBoost model offers an efficient and reliable solution for power demand forecasting,with future optimization potential in data preprocessing,algorithm integration,and interpretability.展开更多
Grey theory is a multidisciplinary and generic theory to cope with systems of poor or deficient information. We proposed in this paper an improved grey method (GM) to overcome the disadvantages of the general GM(1,1)....Grey theory is a multidisciplinary and generic theory to cope with systems of poor or deficient information. We proposed in this paper an improved grey method (GM) to overcome the disadvantages of the general GM(1,1). In the improved GM(1,1), a new background value formula is deduced and Markov-chain sign estimation is imbedded into the residual modification model. We tested the efficiency and accuracy of our model by applying it to the power demand forecasting in Taiwan. Experimental results demonstrate the new method has obviously a higher prediction accuracy than the general model.展开更多
The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the conce...The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the concentrated solar power plant with thermal energy storage is usually located in drought area and used to provide a dispatchable power output,the S-CO_(2) Brayton cycle has to operate under fluctuating ambient temperature and diverse power demand scenarios.In addition,the cycle design condition will directly affect the off-design performance.In this work,the combined effects of design condition,and distributions of ambient temperature and power demand on the cycle operating performance are analyzed,and the off-design performance maps are proposed for the first time.A cycle design method with feedback mechanism of operating performance under varied ambient temperature and power demand is introduced innovatively.Results show that the low design value of compressor inlet temperature is not conductive to efficient operation under low loads and sufficient output under high ambient temperatures.The average yearly efficiency is most affected by the average power demand,while the load cover factor is significantly influenced by the average ambient temperature.With multi-objective optimization,the optimal solution of designed compressor inlet temperature is close to the minimum value of35℃ in Delingha with low ambient temperature,while reaches 44.15℃ in Daggett under the scenario of high ambient temperature,low average power demand,long duration and large value of peak load during the peak temperature period.If the cycle designed with compressor inlet temperature of 35℃ instead of 44.15℃ in Daggett under light industry power demand,the reduction of load cover factor will reach 0.027,but the average yearly efficiency can barely be improved.展开更多
Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems insta...Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems installed on roadways,they constitute a charging infrastructure or electrified roads(eRoads)that have many advantages.For instance,the large battery size of heavy-duty EVs can significantly be downsized due to charging-whiledriving.However,a high power demand of the DWC system,especially during traffic rush periods,could lead to voltage instability in the grid and undesirable power demand curves.In this paper,a model for the power demand is developed to predict the DWC system's power demand at various levels of EV penetration rate.The DWC power demand profile in the chosen 550 km section of a major highway in Canada is simulated.Solar photovoltaic(PV)panels are integrated with the DWC,and the integrated system is optimized to mitigate the peak power demand on the electrical grid.With solar panels of 55,000 kW rated capacity installed along roadsides in the study region,the peak power demand on the electrical grid is reduced from 167.5 to 136.1 MW or by 18.7%at an EV penetration rate of 30%under monthly average daily solar radiation in July.It is evidenced that solar PV power has effectively smoothed the peak power demand on the grid.Moreover,the locally generated renewable power could help ease off expensive grid upgrades and expansions for the eRoad.Also,the economic feasibility of the solar PV integrated DWC system is assessed using cost analysis metrics.展开更多
Power demand prediction for buildings at a large scale is required for power grid operation.The bottom-up prediction method using physics-based models is popular,but has some limitations such as a heavy workload on mo...Power demand prediction for buildings at a large scale is required for power grid operation.The bottom-up prediction method using physics-based models is popular,but has some limitations such as a heavy workload on model creation and long computing time.Top-down methods based on data driven models are fast,but less accurate.Considering the similarity of power demand patterns of single buildings and the superiority of generative adversarial network(GAN),this paper proposes a new method(E-GAN),which combines a physics-based model(EnergyPlus)and a data-driven model(GAN),to predict the daily power demand for buildings at a large scale.The new E-GAN method selects a small number of typical buildings and utilizes EnergyPlus models to predict their power demands.Utilizing the prediction for those typical buildings,the GAN then is adopted to forecast the power demands of a large number of buildings.To verify the proposed method,the E-GAN is used to predict 24-hour power demands for a set of residential buildings.The results show that(1)4.3%of physics-based models in each building category are required to ensure the prediction accuracy;(2)compared with the physics-based model,the E-GAN can predict power demand accurately with only 5%error(measured by mean absolute percentage error,MAPE)while using only approximately 9%of the computing time;and(3)compared with data-driven models(e.g.,support vector regression,extreme learning machine,and polynomial regression model),E-GAN demonstrates at least 60%reduction in prediction error measured by MAPE.展开更多
A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there a...A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there are strong complementarities between two models. Firstly, the rough set was used to reduce the condition attributes, then to eliminate the attributes that were redundant for the forecast, Secondly, it adopted the minimum condition attributes obtained by reduction and the corresponding original data to re-form a new training sample, which only kept the important attributes affecting the forecast accuracy. Finally, it studied and trained the SVM with the training samples after reduction, inputted the test samples re-formed by the minimum condition attributes and the corresponding original data, and then got the mapping relationship model between condition attributes and forecast variables after testing it. This model was used to forecast the power supply and demand. The results show that the average absolute error rate of power consumption of the whole society and yearly maximum load are 14.21% and 13.23%, respectively, which indicates that the RS-SVM forecast model has a higher degree of accuracy.展开更多
The paper analyzes the present situation of power supply and demand based on full and accurate data.Although the electricity generation in 2003 will reach the target of the 10"Five-year Plan,but the scale of powe...The paper analyzes the present situation of power supply and demand based on full and accurate data.Although the electricity generation in 2003 will reach the target of the 10"Five-year Plan,but the scale of power sources construction is severely insufficient.The situation of supply and demand will be very pressing in the latter three years of the 10"Five-year Plan.Therefore,an urgent task is to speedily start constructing a batch of medium and large generation projects.展开更多
Based on the analysis on economic situation in China in 2001, the paperdiscusses power supply and demand features nationwide and by regions andprovinces, present estimation of power supply and demand in 2002. In concl...Based on the analysis on economic situation in China in 2001, the paperdiscusses power supply and demand features nationwide and by regions andprovinces, present estimation of power supply and demand in 2002. In conclusion,the paper presents suggestions to overcome difficulties on capital funds andtechniques.[展开更多
In the first half of 2007, the power industry in Shandongprovince continued to maintain a rapid growth momentum.The gross electricity consumption amounted to 121.25 TWh,14.4% higher over that in the same period of las...In the first half of 2007, the power industry in Shandongprovince continued to maintain a rapid growth momentum.The gross electricity consumption amounted to 121.25 TWh,14.4% higher over that in the same period of last year. The totalinstalled capacity reached 53.29 GW. It was expected that bythe end of 2007, the gross electricity consumption in Shan-dong would reach 260 TWh, increasing by 14.4% on ayear-on-year basis; the maximum load would reach 40.展开更多
The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersource...The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[展开更多
基金supported by Mahasarakham University for Piyapatr Busababodhin’s work.Guoqing Chen’s research was supported by Chengdu Jincheng College Green Data Integration Intelligence Research and Innovation Project(No.2025-2027)the High-Quality Development Research Center Project in the Tuojiang River Basin(No.TJGZL2024-07)+1 种基金the Open Fund ofWuhan Gravitation and Solid Earth Tides,National Observation and Research Station(No.WHYWZ202406)the Scientific Research Fund of the Institute of Seismology,CEA,and the National Institute of Natural Hazards,MEM(No.IS202236328).
文摘Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimensionality reduction,temporal modeling,and robust prediction,especially for multi-day forecasting.A novel hybrid model,SLHS-TCN-XGBoost,is proposed for power demand forecasting,leveraging SLHS(dimensionality reduction),TCN(temporal feature learning),and XGBoost(ensemble prediction).Applied to the three-year electricity load dataset of Seoul,South Korea,the model’s MAE,RMSE,and MAPE reached 112.08,148.39,and 2%,respectively,which are significantly reduced in MAE,RMSE,and MAPE by 87.37%,87.35%,and 87.43%relative to the baseline XGBoost model.Performance validation across nine forecast days demonstrates superior accuracy,with MAPE as low as 0.35%and 0.21%on key dates.Statistical Significance tests confirm significant improvements(p<0.05),with the highest MAPE reduction of 98.17%on critical days.Seasonal and temporal error analyses reveal stable performance,particularly in Quarter 3 and Quarter 4(0.5%,0.3%)and nighttime hours(<1%).Robustness tests,including 5-fold cross-validation and Various noise perturbations,confirm the model’s stability and resilience.The SLHS-TCN-XGBoost model offers an efficient and reliable solution for power demand forecasting,with future optimization potential in data preprocessing,algorithm integration,and interpretability.
文摘Grey theory is a multidisciplinary and generic theory to cope with systems of poor or deficient information. We proposed in this paper an improved grey method (GM) to overcome the disadvantages of the general GM(1,1). In the improved GM(1,1), a new background value formula is deduced and Markov-chain sign estimation is imbedded into the residual modification model. We tested the efficiency and accuracy of our model by applying it to the power demand forecasting in Taiwan. Experimental results demonstrate the new method has obviously a higher prediction accuracy than the general model.
基金supported by Beijing Natural Science Foundation (Grant No.3202014)。
文摘The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the concentrated solar power plant with thermal energy storage is usually located in drought area and used to provide a dispatchable power output,the S-CO_(2) Brayton cycle has to operate under fluctuating ambient temperature and diverse power demand scenarios.In addition,the cycle design condition will directly affect the off-design performance.In this work,the combined effects of design condition,and distributions of ambient temperature and power demand on the cycle operating performance are analyzed,and the off-design performance maps are proposed for the first time.A cycle design method with feedback mechanism of operating performance under varied ambient temperature and power demand is introduced innovatively.Results show that the low design value of compressor inlet temperature is not conductive to efficient operation under low loads and sufficient output under high ambient temperatures.The average yearly efficiency is most affected by the average power demand,while the load cover factor is significantly influenced by the average ambient temperature.With multi-objective optimization,the optimal solution of designed compressor inlet temperature is close to the minimum value of35℃ in Delingha with low ambient temperature,while reaches 44.15℃ in Daggett under the scenario of high ambient temperature,low average power demand,long duration and large value of peak load during the peak temperature period.If the cycle designed with compressor inlet temperature of 35℃ instead of 44.15℃ in Daggett under light industry power demand,the reduction of load cover factor will reach 0.027,but the average yearly efficiency can barely be improved.
基金Funding for this work was provided by Natural Resources Canada through the Program of Energy Research and Development.
文摘Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems installed on roadways,they constitute a charging infrastructure or electrified roads(eRoads)that have many advantages.For instance,the large battery size of heavy-duty EVs can significantly be downsized due to charging-whiledriving.However,a high power demand of the DWC system,especially during traffic rush periods,could lead to voltage instability in the grid and undesirable power demand curves.In this paper,a model for the power demand is developed to predict the DWC system's power demand at various levels of EV penetration rate.The DWC power demand profile in the chosen 550 km section of a major highway in Canada is simulated.Solar photovoltaic(PV)panels are integrated with the DWC,and the integrated system is optimized to mitigate the peak power demand on the electrical grid.With solar panels of 55,000 kW rated capacity installed along roadsides in the study region,the peak power demand on the electrical grid is reduced from 167.5 to 136.1 MW or by 18.7%at an EV penetration rate of 30%under monthly average daily solar radiation in July.It is evidenced that solar PV power has effectively smoothed the peak power demand on the grid.Moreover,the locally generated renewable power could help ease off expensive grid upgrades and expansions for the eRoad.Also,the economic feasibility of the solar PV integrated DWC system is assessed using cost analysis metrics.
基金The Chinese team is supported by the National Natural Science Foundation of China(62076150,62173216,61903226)the Taishan Scholar Project of Shandong Province(TSQN201812092)+2 种基金the Key Research and Development Program of Shandong Province(2019GGX101072,2019JZZY010115)the Youth Innovation Technology Project of Higher School in Shandong Province(2019KJN005)the Key Research and Development Program of Shandong Province(2019JZZY010115)。
文摘Power demand prediction for buildings at a large scale is required for power grid operation.The bottom-up prediction method using physics-based models is popular,but has some limitations such as a heavy workload on model creation and long computing time.Top-down methods based on data driven models are fast,but less accurate.Considering the similarity of power demand patterns of single buildings and the superiority of generative adversarial network(GAN),this paper proposes a new method(E-GAN),which combines a physics-based model(EnergyPlus)and a data-driven model(GAN),to predict the daily power demand for buildings at a large scale.The new E-GAN method selects a small number of typical buildings and utilizes EnergyPlus models to predict their power demands.Utilizing the prediction for those typical buildings,the GAN then is adopted to forecast the power demands of a large number of buildings.To verify the proposed method,the E-GAN is used to predict 24-hour power demands for a set of residential buildings.The results show that(1)4.3%of physics-based models in each building category are required to ensure the prediction accuracy;(2)compared with the physics-based model,the E-GAN can predict power demand accurately with only 5%error(measured by mean absolute percentage error,MAPE)while using only approximately 9%of the computing time;and(3)compared with data-driven models(e.g.,support vector regression,extreme learning machine,and polynomial regression model),E-GAN demonstrates at least 60%reduction in prediction error measured by MAPE.
基金Project(70901025) supported by the National Natural Science Foundation of China
文摘A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there are strong complementarities between two models. Firstly, the rough set was used to reduce the condition attributes, then to eliminate the attributes that were redundant for the forecast, Secondly, it adopted the minimum condition attributes obtained by reduction and the corresponding original data to re-form a new training sample, which only kept the important attributes affecting the forecast accuracy. Finally, it studied and trained the SVM with the training samples after reduction, inputted the test samples re-formed by the minimum condition attributes and the corresponding original data, and then got the mapping relationship model between condition attributes and forecast variables after testing it. This model was used to forecast the power supply and demand. The results show that the average absolute error rate of power consumption of the whole society and yearly maximum load are 14.21% and 13.23%, respectively, which indicates that the RS-SVM forecast model has a higher degree of accuracy.
文摘The paper analyzes the present situation of power supply and demand based on full and accurate data.Although the electricity generation in 2003 will reach the target of the 10"Five-year Plan,but the scale of power sources construction is severely insufficient.The situation of supply and demand will be very pressing in the latter three years of the 10"Five-year Plan.Therefore,an urgent task is to speedily start constructing a batch of medium and large generation projects.
文摘Based on the analysis on economic situation in China in 2001, the paperdiscusses power supply and demand features nationwide and by regions andprovinces, present estimation of power supply and demand in 2002. In conclusion,the paper presents suggestions to overcome difficulties on capital funds andtechniques.[
文摘In the first half of 2007, the power industry in Shandongprovince continued to maintain a rapid growth momentum.The gross electricity consumption amounted to 121.25 TWh,14.4% higher over that in the same period of last year. The totalinstalled capacity reached 53.29 GW. It was expected that bythe end of 2007, the gross electricity consumption in Shan-dong would reach 260 TWh, increasing by 14.4% on ayear-on-year basis; the maximum load would reach 40.
文摘The paper analyzes the un certainty on power supply and demandforecast during the 10th Five-year Plan period and sug gests measures to beemp lo ye d.
文摘The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[