Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on ...Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.展开更多
A radio frequency argon plasma reactor with a stirrer was employed for the surface treatment of polypropylene (PP) powders. The changes in the superficial contact angle and the superficial composition of the un-trea...A radio frequency argon plasma reactor with a stirrer was employed for the surface treatment of polypropylene (PP) powders. The changes in the superficial contact angle and the superficial composition of the un-treated and treated PP powders were analyzed by means of water contact angle (WCA) measurement, X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The water contact angle changed from the original value of 130.2° before plasma treatment to the value of 73.6° after treatment for 5 minutes. With the increase in plasma treating time, there were a decrease in the water contact angle and an increase in the content of oxygen containing polar functional groups (i.e., C-O, C=O and O-C=O). Both XPS and ATR-FTIR results indicated that the plasma treatment led to the formation of oxygen containing polar functional groups due to oxidation on the surface of the PP powders, and the trend of variation of the water contact angle with plasma treating time was related to the concentration of oxygen atom on the treated PP powders surface. Furthermore, the aging of the plasma-treated PP powders was investigated.展开更多
Leachate sludge,a byproduct of municipal solid waste leachate treated through biochemical processes,is characterized by high water content(761.1%)and significant organic matter content(71.2%).Cement that is commonly u...Leachate sludge,a byproduct of municipal solid waste leachate treated through biochemical processes,is characterized by high water content(761.1%)and significant organic matter content(71.2%).Cement that is commonly used for solidifying leachate sludge has shown limited effectiveness.To address this issue,an alkali-activated ground-granulated blast-furnace slag(GGBS)geopolymer blended with polypropylene fibers was developed to solidify leachate sludge.Moreover,unconfined compressive strength(UCS),immersion,as well as X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and scanning electron microscope(SEM)tests were conducted to investigate the solidification effect and mechanism of the GGBS-based geopolymer and fibers on leachate sludge.The results showed that:the 28-d UCS of the solidified sludge with 20%and 30%GGBS is 0.35 MPa and 1.85 MPa,and decreases to 0.18 MPa and 1.13 MPa,respectively,after soaked in water for 28 d.Notably,the UCS of the solidified sludge with 30%GGBS satisfied the strength requirement of roadbed materials.Polypropylene fibers significantly enhanced the strength,ductility and water stability of the solidified sludge,with an optimal fiber content of 0.3%.Alkali-activated GGBS geopolymer generated three-dimensional,cross-linked geopolymeric gels within the solidified sludge,cementing sludge particles and filling intergranular pores to form a stable cementitious structure,thereby achieving effective solidification.Furthermore,incorporating polypropylene fibers improved the bonding and anchoring effect between fiber and solidified sludge,constrained lateral deformation of the solidified sludge,restricted crack propagation,and enhanced engineering performance of the solidified leachate sludge.展开更多
To compare the suitable working conditions of polypropylene(PP)and polycaprolactam(PA6)materials in actual use in automobiles,the effects of different temperature aging and different reagents on the mechanical propert...To compare the suitable working conditions of polypropylene(PP)and polycaprolactam(PA6)materials in actual use in automobiles,the effects of different temperature aging and different reagents on the mechanical properties of the two materials,such as tensile,bending,compression,and impact were studied.The results indicate that the short⁃term low⁃temperature environment had no much effect on the mechanical properties of PP and PA6.After long⁃term thermal aging at 80℃,the strength of PP and PA6 increased while their toughness decreased.After short⁃term thermal aging at 120℃,PP strength decreases and toughness increases,while PA6 strength increases and toughness decreases.The soaking of glass water and car shampoo had no much effect on the mechanical properties of PP,but had a significant impact on the mechanical properties of PA6.With the increase of soaking time,the strength of PA6 significantly decreases and the toughness significantly increases.The soaking of 95#gasoline had no much effect on the mechanical properties of PA6,but has a significant impact on the mechanical properties of PP.After 720 h of soaking,the retention rates of the tensile strength,bending strength,and compressive strength of PP were all less than 80%,while the retention rate of the impact strength of the cantilever beam was 160.4%.展开更多
A novel eco-friendly charring agent(L-OH)was successfully synthesized by combining pentaerythritol(PER)with lignin through a simple two-step reaction.The structure of L-OH was characterized using Fourier transform inf...A novel eco-friendly charring agent(L-OH)was successfully synthesized by combining pentaerythritol(PER)with lignin through a simple two-step reaction.The structure of L-OH was characterized using Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM)and EDS.In addition,L-OH was introduced into polypropylene(PP)together with melamine(MEL)and ammonium polyphosphate(APP)as an intumescent flame retardant(IFRR).The flame retardancy of PP/IFRR composites were investigated using limited oxygen index(LOI),UL-94,thermogravimetric analysis(TGA)and cone calorimeter(CC)test.The experimental results indicate that the PP/IFRR composites pass the V-0 grade of the UL-94 test when the addition amount of IFRR is no less than 20%,and the LOI value of the composite reaches 32.2%at 30%IFRR addition.The peak heat release rate(PHRR)and peak smoke production rate(PSPR)of the composite decrease by 72.8%and 70.4%compared with pure PP,respectively.The flame retardancy mechanism was investigated by TGA,TG-FTIR and residual carbon analysis.These analyses indicate that L-OH can form a more continuous and dense carbon layer during the combustion process,which is the main factor contributing to the improved flame retardancy of PP.展开更多
A comparative study of products of thermal and thermocatalytic cracking of polypropylene(PP) in the presence of potassium polytitanate(PPT) synthesized by treatment of TiO_(2)(rutile) powder with molten mixture of KOH...A comparative study of products of thermal and thermocatalytic cracking of polypropylene(PP) in the presence of potassium polytitanate(PPT) synthesized by treatment of TiO_(2)(rutile) powder with molten mixture of KOH and KNO_(3) taken in a weight ratio of 30∶30∶40 has been carried out.It was shown that the studied type of PPT powder exhibits catalytic properties in the reaction of thermal decomposition of PP,compared to the effect of commercial zeolite catalyst CBV-780 traditionally used for this purpose.Based on the analysis performed,the differences in the mechanism of catalytic action of PPT and the zeolite were considered.The reasons for the observed differences in the composition of PP cracking products and in the rate of coke formation on the surface of studied catalysts were analyzed.Considering the obtained results,it has been proposed that the CBV-780 catalyst promoted more intensive production of the gaseous hydrocarbons compared to PPT,due to higher specific surface area(internal surface) accessible for relatively light and small-sized hydrocarbon products of cracking.However,intensive coke formation on the outer surface of the microporous zeolite contributes to the blocking of transport channels and the rapid loss of catalytic action.At the same time,PPT,which initially has a smaller specific surface area,retains its catalytic activity significantly longer due to slit-shaped flat pores and higher transport accessibility of the inner surface.展开更多
The present study presents an assessment of the interrelations between long-chain branching,specific nucleation,and end-use properties of polypropylene blends:blends of linear polypropylene(L-PP)and long-chain branche...The present study presents an assessment of the interrelations between long-chain branching,specific nucleation,and end-use properties of polypropylene blends:blends of linear polypropylene(L-PP)and long-chain branched polypropylene(LCB-PP)modified by a specificβ-nucleating agent(NA).Specimens with various LCB-PP compositions with and without NA were prepared under complex flow fields by injection molding.Wide-angle X-ray scattering was employed to capture the X-ray patterns of both the skin and core of the specimens,determining the overall crystallinity and amounts of individual polymorphs.The increasing content of LCB-PP andγ-phase,at the same time,in the blends is reflected in both increasing crystallinity and improved mechanical properties,namely,yield stress and Young’s modulus.On the other hand,the composition of the blends had no significant effect on the impact strength,except for nucleated L-PP.It has been demonstrated that adding a relatively small amount of LCB-PP is sufficient to modify the mechanical properties of linear polypropylene.Even a very small amount of LCB-PP in the L-PP suppressed the effectiveness of NA.展开更多
This study reports the fabrication of polypropylene(PP)-based microfiber webs(<1µm) using a hybrid melt electrospinning/blown process with the aim of establishing a scalable and solvent-free platform for advan...This study reports the fabrication of polypropylene(PP)-based microfiber webs(<1µm) using a hybrid melt electrospinning/blown process with the aim of establishing a scalable and solvent-free platform for advanced lithium-ion battery separators. The primary objective was to address the inherent limitations of conventional melt electrospinning particularly the difficulty of achieving fiber thinning due to the high viscosity of polymer melts by incorporating auxiliary hot air flow and reducing the nozzle diameter from 1.0mm to 0.3mm. This modified configuration enables enhanced jet elongation and fiber diameter control under processing conditions relevant to industrial applications. The effects of nozzle temperature, hot air temperature, and applied voltage on fiber formation and jet behavior were systematically examined using highspeed charge-coupled device(CCD) imaging techniques. The results demonstrated that increasing both the hot air temperature and applied voltage significantly improved fiber thinning and uniformity, yielding an average fiber diameter of approximately 0.86µm without evidence of thermal degradation. In contrast, elevated nozzle temperatures, while enhancing melt flowability, resulted in increased discharge rates and hindered fiber refinement when applied alone. These findings identify hot-air temperature as the most robust and controllable parameter for producing submicron fibers while maintaining the polymer integrity. Although the present study primarily focuses on morphological optimization and jet dynamics, future research will investigate the functional performance of fabricated microfiber webs as battery separators. Overall, the proposed hybrid process offers a technically feasible and environmentally sustainable route for the continuous production of fine PP-based fibers tailored for high-performance energy-storage applications.展开更多
Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,...Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,amidoximebased radiation grafted adsorbents have been identified as effective for iron removal.In this study,an amidoximefunctionalized,radiation-grafted adsorbent synthesized from polypropylene waste(PPw-g-AO-10)was employed to remove iron from leached geological samples.The adsorption process was systematically optimized by investigating the effects of pH,contact time,adsorbent dosage,and initial ferric ion concentration.Under optimal conditions-pH1.4,a contact time of 90 min,and an initial ferric ion concentration of 4500 mg/L-the adsorbent exhibited a maximum iron adsorption capacity of 269.02 mg/g.After optimizing the critical adsorption parameters,the adsorbent was applied to the leached geological samples,achieving a 91%removal of the iron content.The adsorbent was regenerated through two consecutive cycles using 0.2 N HNO_(3),achieving a regeneration efficiency of 65%.These findings confirm the efficacy of the synthesized PPw-g-AO-10 as a cost-effective and eco-friendly adsorbent for successfully removing iron from leached geological matrices while maintaining a reasonable degree of reusability.展开更多
Polypropylene(PP)has a relatively low melt strength due to its linear structure,which seriously limits its supercritical CO_(2)foaming performance.Introducing long-chain branches(LCBs)via grafting can significantly en...Polypropylene(PP)has a relatively low melt strength due to its linear structure,which seriously limits its supercritical CO_(2)foaming performance.Introducing long-chain branches(LCBs)via grafting can significantly enhance its melt strength.However,the relationship between the LCB level of high melt strength polypropylene(HMSPP)and its foaming behavior remains unclear.In this study,a series of HMSPP with different LCB levels was prepared using vinyl polydimethylsiloxane(VS)of varying viscosities as grafting monomers to investigate this relationship.Rheological analysis showed that the increase in viscosity of VS led to higher LCB levels in HMSPP.The melt strength of HMSPP increases with the increase of LCB levels,reaching up to 0.62 N,which is 13 times higher than that of the raw material.Supercritical CO_(2)foaming results revealed that the expansion ratio of HMSPP first increased and then decreased with the increase of melt strength,reaching a maximum of 39.4 times.Combining experiments with simulations,the influence of LCB levels on the dissolution and diffusion behavior of CO_(2)in HMSPP was clarified.This study deepens the understanding of the relationship between LCB and the foaming behavior of HMSPP,providing valuable insights for designing HMSPP with optimized foaming properties.展开更多
This study focuses on the electrical properties and microstructure of polypropylene(PP)-based blends used for cable insulation in nuclear power plants(NPPs).The PP-based blend,comprising isotactic PP and propylene-bas...This study focuses on the electrical properties and microstructure of polypropylene(PP)-based blends used for cable insulation in nuclear power plants(NPPs).The PP-based blend,comprising isotactic PP and propylene-based elastomer(PBE)at concentrations ranging from 0 to 50 wt%,underwent a melt blending process and subsequent cobalt-60 gamma-ray irradiation with doses ranging from 0 to 250 kGy.Electrical conductivity,trap distribution,and alternating(AC)breakdown strength were chosen to assess the insulation performance.These results indicate that the addition of PBE significantly improves the electrical properties of PP under irradiation.For PP,the electrical conductivity increased with irradiation,whereas the trap depth and breakdown strength decreased sharply.Conversely,for the blend,these changes initially exhibit opposite trends.When the irradiation was increased to 250 kGy,the AC breakdown strength of the blend improved by more than 21%compared to that of PP.The physical and chemical structures of the samples were investigated to explore the improvement mechanisms.The results offer insights into the design of new cable-insulation materials suitable for NPPs.展开更多
Polypropylene composites of snail shell powder were prepared at filler contents, 0 to 40 wt%. The particle sizes of the snail shell powder investigated were 0.150, 0.30, and 0.42 μm. Talc, of particle size, 0.150 μm...Polypropylene composites of snail shell powder were prepared at filler contents, 0 to 40 wt%. The particle sizes of the snail shell powder investigated were 0.150, 0.30, and 0.42 μm. Talc, of particle size, 0.150 μm was used as the reference filler. The polypropylene composites were prepared in an injection moulding machine and the resulting composites were extruded as sheets. Some mechanical and end-use properties of the prepared composites were determined. Results showed that the snail shell powder improved the tensile modulus, flexural strength, and impact strength of polypropylene and these properties increased with increases in the filler content and decreases in the filler particle size. The elongation at break of the composites was however observed to decrease with increases in the filler content, and particle size. The elongation at break of talc filled polypropylene was zero, an indication of the brittle nature of polypropylene composites of talc. The hardness, water sorption (24-hr) and specific gravity of the composites were found to increase with increases in the filler content, and decreases in the filler particle size. The level of water absorbed by snail shell powder composites of polypropylene is considerably higher than that of talc filled polypropylene. The flame retardant properties of the prepared composites were however found to decrease with increases in the filler content, and particle size. Generally, snail shell powder was found to show greater property improvement over talc in the prepared composites.展开更多
To examine the influences of waste polypropylene fiber(PPF)on the strength and internal pore structure of recycled aggregate concrete incorporating iron ore tailings,both the cubic compressive strength and axial compr...To examine the influences of waste polypropylene fiber(PPF)on the strength and internal pore structure of recycled aggregate concrete incorporating iron ore tailings,both the cubic compressive strength and axial compressive strength of the concrete were measured.Additionally,the microstructure was analyzed using scanning electron microscopy.The evolution of pore structure parameters,including pore size distribution,pore type distribution,and nuclear magnetic resonance spectral area in the concrete,was investigated through nuclear magnetic resonance(NMR)analysis.A model correlating the concrete's pore structure with its macroscopic performance was subsequently developed based on fractal theory.The results demonstrate that an appropriate amount of PPF created a bridging effect that decelerated the progression of macro cracks,enhanced the ductility of the concrete's failure mode,and increased both cubic compressive strength and axial compressive strength,with the most effective dosage being approximately 0.6%.An appropriate amount of PPF(ranging from 0.3%to 0.6%)facilitated the formation of harmless pores and shifted the pore size distribution towards medium and small sizes.Specifically,a fiber content of 0.6%resulted in the most significant reduction in the T2 spectral area.Furthermore,the pore structure of concrete exhibits distinct fractal characteristics.As the PPF content increased,the fractal dimension initially rose and then declined,demonstrating a strong correlation with the mechanical properties.展开更多
Polypropylene(PP) accounts for approximately 28.0% of the global polyolefin market,valued at $243.4 billion in 2022.Known for its lightweight,chemical resistance,costeffectiveness,high strength and melting point,PP is...Polypropylene(PP) accounts for approximately 28.0% of the global polyolefin market,valued at $243.4 billion in 2022.Known for its lightweight,chemical resistance,costeffectiveness,high strength and melting point,PP is widely used in various applications.Its properties and applications are closely tied to its tacticity.One-dimensional(1D) conventional 13C NMR has been extensively utilized to analyze PP tacticity,but its low sensitivity and longer relaxation time remain drawbacks.Typically,analyzing a single PP sample requires around 9 h of NMR time.Using of a cryogenically cooled 10 mm NMR probe can significantly reduce this measurement time;however,its high cost makes it inaccessible for most NMR laboratories.While the refocused insensitive nuclei enhanced by polarization transfer(RINEPT) technique is well-known for enhancing NMR sensitivity,there are no published studies using 1D 13C RINEPT to quantify PP tacticity.Relaxation agents like chromium(Ⅲ) acetylacetonate(Cr(acac)_(3)) have also been used to reduce relaxation times in polyolefin NMR analyses.Here we introduce a straightforward and easily implementable 1D 13C NMR method for rapid PP tacticity quantification.This method combines Cr(acac)_(3),Bruker's existing RINEPT pulse sequence(ineptrd),and our recently published ~1H decoupling sequence(bi_waltz65_256 pl) to eliminate ^(1)H decoupling artifacts.It is worth noting that decoupling artifacts are always present.When the signal-to-noise ratio(SNR) is low,these artifacts are obscured by noise.For example,in some two-dimensional(2D) or three-dimensional(3D) NMR spectra,decoupling artifacts are barely visible because of the low SNR.However,when attempting to observe weak signals in ^(1)D spectra,increasing the sample concentration or the number of scans enhances the SNR,revealing the decoupling artifacts.The decoupling artifacts appeared superimpose with some other weak signals,affecting the measurements of signal intensities.Therefore,improved ~1H-decoupling methods are crucial for such data acquisitio n.This synergy results in a 9.4-to 9.7-fold sensitivity enhancement,equating to an 88-to 94-fold reduction(9.4^(2)≈88,9.7^(2)≈94) in NMR acquisition time compared to conventional 1D ^(13)C NMR experiment with Cr(acac)_(3).The time savings are even more substantial compared to experiments without Cr(acac)_(3).The faster and quantitative approach is accessible to researchers with or without cryoprobes.Beyond PP,this method can be applied to tacticity measurements of other polyolefins,such as polybutene,polyhexene and polyoctene.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printin...This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printing(3DP)by improving its mechanical properties while simultaneously adding antibacterial properties.The latter can find extremely important and versatile properties that are applicable in defense and security domains.PP/Ag nanocomposites were prepared using a novel method based on a reaction occurring while mixing appropriate quantities of the starting polymers and additives,namely polyvinylpyrrolidone(PVP)as the matrix material and silver nitrate(AgNO_(3))as the filler.This process produced three-dimensional(3D)printed filaments,which were then used to create specimens for a series of standardized tests.It was found that the mechanical properties of the nanocomposites were enhanced in relation to pristine PP,especially for the PP matrix with various loadings of AgNO_(3)and PVP,such as 5.0 wt%and 2.5 wt%,respectively.The voids,inclusions,and actual-to-nominal dimensions also showed improved results.The 3DP specimens exhibited a more effective biocidal performance against Staphylococcus aureus than Escherichia coli,which developed an inhibition zone only in the case of PP with filler loading percentages of AgNO_(3)and PVP at 10.0 wt%and 5.0 wt%,respectively Compounds possessing such properties can be beneficial for various applications requiring increased mechanical properties and biocidal capabilities,such as in the Defence or medical industries.展开更多
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi...The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.展开更多
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti...The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites.展开更多
We read with great interest the study by Zhang et al on Yiyi Fuzi Baijiang powder(YFB),which exemplifies the power of modern methods to validate traditional Chinese medicine(TCM).The key insight is that YFB doesn’t m...We read with great interest the study by Zhang et al on Yiyi Fuzi Baijiang powder(YFB),which exemplifies the power of modern methods to validate traditional Chinese medicine(TCM).The key insight is that YFB doesn’t merely alter“good”or“bad”bacteria but restores the gut microbiota’s holistic equilibrium.This is powerfully shown by its paradoxical reduction of anaerobic probiotics like Bifidobacterium,rectifying the diseased,hypoxic environment,causing their aberrant overgrowth.This challenges the conventional probiotic paradigm and underscores a core TCM principle:Herbal formulas treat disease by restoring the body’s overall functional balance.Future research should focus on the interplay between herbal components,intestinal oxygen,and microbial metabolites to further unravel this sophisticated dialogue.展开更多
Aluminate-based coupling agent was added as a compatibilizer to make the chemical modification of wood powder. The mechanical properties and morphology of wood powder/polypropylene composites were studied. The results...Aluminate-based coupling agent was added as a compatibilizer to make the chemical modification of wood powder. The mechanical properties and morphology of wood powder/polypropylene composites were studied. The results showed that the compatibilizer can increase the impact strength of the wood/polypropylene composites, but it has a slightly negative effect on the tensile and flexural strength. For dynamic mechanical properties and Differential Scanning Calorimetry, Aluminate-based coupling agent can slightly increase the storage modulus and loss modulus, and decrease the melt point and the Calorie of Melt. Scanning electron microscopy showed that Aluminate-based coupling agent had a stronger affinity between the wood and polypropylene surfaces. These results suggested that Aluminate-based coupling agent may play a useful role in improving wood powder/polypropylene composites properties.展开更多
基金This work was supported by the National Science Fund for Distinguished Young Scholars of China (No.50125312) andSpecial Funds for Major State Basic Research Projects (No.G1999064800).
文摘Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.
文摘A radio frequency argon plasma reactor with a stirrer was employed for the surface treatment of polypropylene (PP) powders. The changes in the superficial contact angle and the superficial composition of the un-treated and treated PP powders were analyzed by means of water contact angle (WCA) measurement, X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The water contact angle changed from the original value of 130.2° before plasma treatment to the value of 73.6° after treatment for 5 minutes. With the increase in plasma treating time, there were a decrease in the water contact angle and an increase in the content of oxygen containing polar functional groups (i.e., C-O, C=O and O-C=O). Both XPS and ATR-FTIR results indicated that the plasma treatment led to the formation of oxygen containing polar functional groups due to oxidation on the surface of the PP powders, and the trend of variation of the water contact angle with plasma treating time was related to the concentration of oxygen atom on the treated PP powders surface. Furthermore, the aging of the plasma-treated PP powders was investigated.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078142).
文摘Leachate sludge,a byproduct of municipal solid waste leachate treated through biochemical processes,is characterized by high water content(761.1%)and significant organic matter content(71.2%).Cement that is commonly used for solidifying leachate sludge has shown limited effectiveness.To address this issue,an alkali-activated ground-granulated blast-furnace slag(GGBS)geopolymer blended with polypropylene fibers was developed to solidify leachate sludge.Moreover,unconfined compressive strength(UCS),immersion,as well as X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and scanning electron microscope(SEM)tests were conducted to investigate the solidification effect and mechanism of the GGBS-based geopolymer and fibers on leachate sludge.The results showed that:the 28-d UCS of the solidified sludge with 20%and 30%GGBS is 0.35 MPa and 1.85 MPa,and decreases to 0.18 MPa and 1.13 MPa,respectively,after soaked in water for 28 d.Notably,the UCS of the solidified sludge with 30%GGBS satisfied the strength requirement of roadbed materials.Polypropylene fibers significantly enhanced the strength,ductility and water stability of the solidified sludge,with an optimal fiber content of 0.3%.Alkali-activated GGBS geopolymer generated three-dimensional,cross-linked geopolymeric gels within the solidified sludge,cementing sludge particles and filling intergranular pores to form a stable cementitious structure,thereby achieving effective solidification.Furthermore,incorporating polypropylene fibers improved the bonding and anchoring effect between fiber and solidified sludge,constrained lateral deformation of the solidified sludge,restricted crack propagation,and enhanced engineering performance of the solidified leachate sludge.
文摘To compare the suitable working conditions of polypropylene(PP)and polycaprolactam(PA6)materials in actual use in automobiles,the effects of different temperature aging and different reagents on the mechanical properties of the two materials,such as tensile,bending,compression,and impact were studied.The results indicate that the short⁃term low⁃temperature environment had no much effect on the mechanical properties of PP and PA6.After long⁃term thermal aging at 80℃,the strength of PP and PA6 increased while their toughness decreased.After short⁃term thermal aging at 120℃,PP strength decreases and toughness increases,while PA6 strength increases and toughness decreases.The soaking of glass water and car shampoo had no much effect on the mechanical properties of PP,but had a significant impact on the mechanical properties of PA6.With the increase of soaking time,the strength of PA6 significantly decreases and the toughness significantly increases.The soaking of 95#gasoline had no much effect on the mechanical properties of PA6,but has a significant impact on the mechanical properties of PP.After 720 h of soaking,the retention rates of the tensile strength,bending strength,and compressive strength of PP were all less than 80%,while the retention rate of the impact strength of the cantilever beam was 160.4%.
基金the equipment support of Sharing Platform of Scientific Equipments,Ministry of Education's Research Center for Comprehensive Utilization and Clean Process Engineering of Phosphrous Resources,Sichuan University。
文摘A novel eco-friendly charring agent(L-OH)was successfully synthesized by combining pentaerythritol(PER)with lignin through a simple two-step reaction.The structure of L-OH was characterized using Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM)and EDS.In addition,L-OH was introduced into polypropylene(PP)together with melamine(MEL)and ammonium polyphosphate(APP)as an intumescent flame retardant(IFRR).The flame retardancy of PP/IFRR composites were investigated using limited oxygen index(LOI),UL-94,thermogravimetric analysis(TGA)and cone calorimeter(CC)test.The experimental results indicate that the PP/IFRR composites pass the V-0 grade of the UL-94 test when the addition amount of IFRR is no less than 20%,and the LOI value of the composite reaches 32.2%at 30%IFRR addition.The peak heat release rate(PHRR)and peak smoke production rate(PSPR)of the composite decrease by 72.8%and 70.4%compared with pure PP,respectively.The flame retardancy mechanism was investigated by TGA,TG-FTIR and residual carbon analysis.These analyses indicate that L-OH can form a more continuous and dense carbon layer during the combustion process,which is the main factor contributing to the improved flame retardancy of PP.
文摘A comparative study of products of thermal and thermocatalytic cracking of polypropylene(PP) in the presence of potassium polytitanate(PPT) synthesized by treatment of TiO_(2)(rutile) powder with molten mixture of KOH and KNO_(3) taken in a weight ratio of 30∶30∶40 has been carried out.It was shown that the studied type of PPT powder exhibits catalytic properties in the reaction of thermal decomposition of PP,compared to the effect of commercial zeolite catalyst CBV-780 traditionally used for this purpose.Based on the analysis performed,the differences in the mechanism of catalytic action of PPT and the zeolite were considered.The reasons for the observed differences in the composition of PP cracking products and in the rate of coke formation on the surface of studied catalysts were analyzed.Considering the obtained results,it has been proposed that the CBV-780 catalyst promoted more intensive production of the gaseous hydrocarbons compared to PPT,due to higher specific surface area(internal surface) accessible for relatively light and small-sized hydrocarbon products of cracking.However,intensive coke formation on the outer surface of the microporous zeolite contributes to the blocking of transport channels and the rapid loss of catalytic action.At the same time,PPT,which initially has a smaller specific surface area,retains its catalytic activity significantly longer due to slit-shaped flat pores and higher transport accessibility of the inner surface.
文摘The present study presents an assessment of the interrelations between long-chain branching,specific nucleation,and end-use properties of polypropylene blends:blends of linear polypropylene(L-PP)and long-chain branched polypropylene(LCB-PP)modified by a specificβ-nucleating agent(NA).Specimens with various LCB-PP compositions with and without NA were prepared under complex flow fields by injection molding.Wide-angle X-ray scattering was employed to capture the X-ray patterns of both the skin and core of the specimens,determining the overall crystallinity and amounts of individual polymorphs.The increasing content of LCB-PP andγ-phase,at the same time,in the blends is reflected in both increasing crystallinity and improved mechanical properties,namely,yield stress and Young’s modulus.On the other hand,the composition of the blends had no significant effect on the impact strength,except for nucleated L-PP.It has been demonstrated that adding a relatively small amount of LCB-PP is sufficient to modify the mechanical properties of linear polypropylene.Even a very small amount of LCB-PP in the L-PP suppressed the effectiveness of NA.
基金financially supported by the Technology Innovation Program(or Industrial Strategic Technology Development Program)(No.20017666)funded by the Ministry of Trade,Industry,and Energy(MOTIE,Korea)。
文摘This study reports the fabrication of polypropylene(PP)-based microfiber webs(<1µm) using a hybrid melt electrospinning/blown process with the aim of establishing a scalable and solvent-free platform for advanced lithium-ion battery separators. The primary objective was to address the inherent limitations of conventional melt electrospinning particularly the difficulty of achieving fiber thinning due to the high viscosity of polymer melts by incorporating auxiliary hot air flow and reducing the nozzle diameter from 1.0mm to 0.3mm. This modified configuration enables enhanced jet elongation and fiber diameter control under processing conditions relevant to industrial applications. The effects of nozzle temperature, hot air temperature, and applied voltage on fiber formation and jet behavior were systematically examined using highspeed charge-coupled device(CCD) imaging techniques. The results demonstrated that increasing both the hot air temperature and applied voltage significantly improved fiber thinning and uniformity, yielding an average fiber diameter of approximately 0.86µm without evidence of thermal degradation. In contrast, elevated nozzle temperatures, while enhancing melt flowability, resulted in increased discharge rates and hindered fiber refinement when applied alone. These findings identify hot-air temperature as the most robust and controllable parameter for producing submicron fibers while maintaining the polymer integrity. Although the present study primarily focuses on morphological optimization and jet dynamics, future research will investigate the functional performance of fabricated microfiber webs as battery separators. Overall, the proposed hybrid process offers a technically feasible and environmentally sustainable route for the continuous production of fine PP-based fibers tailored for high-performance energy-storage applications.
文摘Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,amidoximebased radiation grafted adsorbents have been identified as effective for iron removal.In this study,an amidoximefunctionalized,radiation-grafted adsorbent synthesized from polypropylene waste(PPw-g-AO-10)was employed to remove iron from leached geological samples.The adsorption process was systematically optimized by investigating the effects of pH,contact time,adsorbent dosage,and initial ferric ion concentration.Under optimal conditions-pH1.4,a contact time of 90 min,and an initial ferric ion concentration of 4500 mg/L-the adsorbent exhibited a maximum iron adsorption capacity of 269.02 mg/g.After optimizing the critical adsorption parameters,the adsorbent was applied to the leached geological samples,achieving a 91%removal of the iron content.The adsorbent was regenerated through two consecutive cycles using 0.2 N HNO_(3),achieving a regeneration efficiency of 65%.These findings confirm the efficacy of the synthesized PPw-g-AO-10 as a cost-effective and eco-friendly adsorbent for successfully removing iron from leached geological matrices while maintaining a reasonable degree of reusability.
基金the financial support of this work by the National Natural Science Foundation of China(Grant 21878089).
文摘Polypropylene(PP)has a relatively low melt strength due to its linear structure,which seriously limits its supercritical CO_(2)foaming performance.Introducing long-chain branches(LCBs)via grafting can significantly enhance its melt strength.However,the relationship between the LCB level of high melt strength polypropylene(HMSPP)and its foaming behavior remains unclear.In this study,a series of HMSPP with different LCB levels was prepared using vinyl polydimethylsiloxane(VS)of varying viscosities as grafting monomers to investigate this relationship.Rheological analysis showed that the increase in viscosity of VS led to higher LCB levels in HMSPP.The melt strength of HMSPP increases with the increase of LCB levels,reaching up to 0.62 N,which is 13 times higher than that of the raw material.Supercritical CO_(2)foaming results revealed that the expansion ratio of HMSPP first increased and then decreased with the increase of melt strength,reaching a maximum of 39.4 times.Combining experiments with simulations,the influence of LCB levels on the dissolution and diffusion behavior of CO_(2)in HMSPP was clarified.This study deepens the understanding of the relationship between LCB and the foaming behavior of HMSPP,providing valuable insights for designing HMSPP with optimized foaming properties.
基金supported by the National Natural Science Foundation of China(No.52077151)the State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE23208)the Key Laboratory of Engineering Dielectrics and Its Application,Ministry of Education(No.KFM202203).
文摘This study focuses on the electrical properties and microstructure of polypropylene(PP)-based blends used for cable insulation in nuclear power plants(NPPs).The PP-based blend,comprising isotactic PP and propylene-based elastomer(PBE)at concentrations ranging from 0 to 50 wt%,underwent a melt blending process and subsequent cobalt-60 gamma-ray irradiation with doses ranging from 0 to 250 kGy.Electrical conductivity,trap distribution,and alternating(AC)breakdown strength were chosen to assess the insulation performance.These results indicate that the addition of PBE significantly improves the electrical properties of PP under irradiation.For PP,the electrical conductivity increased with irradiation,whereas the trap depth and breakdown strength decreased sharply.Conversely,for the blend,these changes initially exhibit opposite trends.When the irradiation was increased to 250 kGy,the AC breakdown strength of the blend improved by more than 21%compared to that of PP.The physical and chemical structures of the samples were investigated to explore the improvement mechanisms.The results offer insights into the design of new cable-insulation materials suitable for NPPs.
文摘Polypropylene composites of snail shell powder were prepared at filler contents, 0 to 40 wt%. The particle sizes of the snail shell powder investigated were 0.150, 0.30, and 0.42 μm. Talc, of particle size, 0.150 μm was used as the reference filler. The polypropylene composites were prepared in an injection moulding machine and the resulting composites were extruded as sheets. Some mechanical and end-use properties of the prepared composites were determined. Results showed that the snail shell powder improved the tensile modulus, flexural strength, and impact strength of polypropylene and these properties increased with increases in the filler content and decreases in the filler particle size. The elongation at break of the composites was however observed to decrease with increases in the filler content, and particle size. The elongation at break of talc filled polypropylene was zero, an indication of the brittle nature of polypropylene composites of talc. The hardness, water sorption (24-hr) and specific gravity of the composites were found to increase with increases in the filler content, and decreases in the filler particle size. The level of water absorbed by snail shell powder composites of polypropylene is considerably higher than that of talc filled polypropylene. The flame retardant properties of the prepared composites were however found to decrease with increases in the filler content, and particle size. Generally, snail shell powder was found to show greater property improvement over talc in the prepared composites.
基金Funded by the Natural Science Foundation of Shaanxi Province(No.2023-JC-QN-0553)。
文摘To examine the influences of waste polypropylene fiber(PPF)on the strength and internal pore structure of recycled aggregate concrete incorporating iron ore tailings,both the cubic compressive strength and axial compressive strength of the concrete were measured.Additionally,the microstructure was analyzed using scanning electron microscopy.The evolution of pore structure parameters,including pore size distribution,pore type distribution,and nuclear magnetic resonance spectral area in the concrete,was investigated through nuclear magnetic resonance(NMR)analysis.A model correlating the concrete's pore structure with its macroscopic performance was subsequently developed based on fractal theory.The results demonstrate that an appropriate amount of PPF created a bridging effect that decelerated the progression of macro cracks,enhanced the ductility of the concrete's failure mode,and increased both cubic compressive strength and axial compressive strength,with the most effective dosage being approximately 0.6%.An appropriate amount of PPF(ranging from 0.3%to 0.6%)facilitated the formation of harmless pores and shifted the pore size distribution towards medium and small sizes.Specifically,a fiber content of 0.6%resulted in the most significant reduction in the T2 spectral area.Furthermore,the pore structure of concrete exhibits distinct fractal characteristics.As the PPF content increased,the fractal dimension initially rose and then declined,demonstrating a strong correlation with the mechanical properties.
文摘Polypropylene(PP) accounts for approximately 28.0% of the global polyolefin market,valued at $243.4 billion in 2022.Known for its lightweight,chemical resistance,costeffectiveness,high strength and melting point,PP is widely used in various applications.Its properties and applications are closely tied to its tacticity.One-dimensional(1D) conventional 13C NMR has been extensively utilized to analyze PP tacticity,but its low sensitivity and longer relaxation time remain drawbacks.Typically,analyzing a single PP sample requires around 9 h of NMR time.Using of a cryogenically cooled 10 mm NMR probe can significantly reduce this measurement time;however,its high cost makes it inaccessible for most NMR laboratories.While the refocused insensitive nuclei enhanced by polarization transfer(RINEPT) technique is well-known for enhancing NMR sensitivity,there are no published studies using 1D 13C RINEPT to quantify PP tacticity.Relaxation agents like chromium(Ⅲ) acetylacetonate(Cr(acac)_(3)) have also been used to reduce relaxation times in polyolefin NMR analyses.Here we introduce a straightforward and easily implementable 1D 13C NMR method for rapid PP tacticity quantification.This method combines Cr(acac)_(3),Bruker's existing RINEPT pulse sequence(ineptrd),and our recently published ~1H decoupling sequence(bi_waltz65_256 pl) to eliminate ^(1)H decoupling artifacts.It is worth noting that decoupling artifacts are always present.When the signal-to-noise ratio(SNR) is low,these artifacts are obscured by noise.For example,in some two-dimensional(2D) or three-dimensional(3D) NMR spectra,decoupling artifacts are barely visible because of the low SNR.However,when attempting to observe weak signals in ^(1)D spectra,increasing the sample concentration or the number of scans enhances the SNR,revealing the decoupling artifacts.The decoupling artifacts appeared superimpose with some other weak signals,affecting the measurements of signal intensities.Therefore,improved ~1H-decoupling methods are crucial for such data acquisitio n.This synergy results in a 9.4-to 9.7-fold sensitivity enhancement,equating to an 88-to 94-fold reduction(9.4^(2)≈88,9.7^(2)≈94) in NMR acquisition time compared to conventional 1D ^(13)C NMR experiment with Cr(acac)_(3).The time savings are even more substantial compared to experiments without Cr(acac)_(3).The faster and quantitative approach is accessible to researchers with or without cryoprobes.Beyond PP,this method can be applied to tacticity measurements of other polyolefins,such as polybutene,polyhexene and polyoctene.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
文摘This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printing(3DP)by improving its mechanical properties while simultaneously adding antibacterial properties.The latter can find extremely important and versatile properties that are applicable in defense and security domains.PP/Ag nanocomposites were prepared using a novel method based on a reaction occurring while mixing appropriate quantities of the starting polymers and additives,namely polyvinylpyrrolidone(PVP)as the matrix material and silver nitrate(AgNO_(3))as the filler.This process produced three-dimensional(3D)printed filaments,which were then used to create specimens for a series of standardized tests.It was found that the mechanical properties of the nanocomposites were enhanced in relation to pristine PP,especially for the PP matrix with various loadings of AgNO_(3)and PVP,such as 5.0 wt%and 2.5 wt%,respectively.The voids,inclusions,and actual-to-nominal dimensions also showed improved results.The 3DP specimens exhibited a more effective biocidal performance against Staphylococcus aureus than Escherichia coli,which developed an inhibition zone only in the case of PP with filler loading percentages of AgNO_(3)and PVP at 10.0 wt%and 5.0 wt%,respectively Compounds possessing such properties can be beneficial for various applications requiring increased mechanical properties and biocidal capabilities,such as in the Defence or medical industries.
基金supported by the National Natural Science Foundation of China(No.52436008)the Inner Mongolia Science and Technology Projects,China(Nos.JMRHZX20210003 and 2023YFCY0009)+3 种基金the Huaneng Group Co Ltd.,China(No.HNKJ23-H50)the National Natural Science Foundation of China(No.22408044)the China Postdoctoral Science Foundation(No.2024M761877)the National Key R&D Program of China(No.SQ2024YFD2200039)。
文摘The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.
基金supported by the National Natural Science Foundation of China(Nos.U2341249,12005076,22205112)the Fundamental Research Funds for the Central Universities(No.2025201012)。
文摘The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites.
文摘We read with great interest the study by Zhang et al on Yiyi Fuzi Baijiang powder(YFB),which exemplifies the power of modern methods to validate traditional Chinese medicine(TCM).The key insight is that YFB doesn’t merely alter“good”or“bad”bacteria but restores the gut microbiota’s holistic equilibrium.This is powerfully shown by its paradoxical reduction of anaerobic probiotics like Bifidobacterium,rectifying the diseased,hypoxic environment,causing their aberrant overgrowth.This challenges the conventional probiotic paradigm and underscores a core TCM principle:Herbal formulas treat disease by restoring the body’s overall functional balance.Future research should focus on the interplay between herbal components,intestinal oxygen,and microbial metabolites to further unravel this sophisticated dialogue.
基金This study was supported by Introduce Foreign Advanced Technology Project (2001-1).
文摘Aluminate-based coupling agent was added as a compatibilizer to make the chemical modification of wood powder. The mechanical properties and morphology of wood powder/polypropylene composites were studied. The results showed that the compatibilizer can increase the impact strength of the wood/polypropylene composites, but it has a slightly negative effect on the tensile and flexural strength. For dynamic mechanical properties and Differential Scanning Calorimetry, Aluminate-based coupling agent can slightly increase the storage modulus and loss modulus, and decrease the melt point and the Calorie of Melt. Scanning electron microscopy showed that Aluminate-based coupling agent had a stronger affinity between the wood and polypropylene surfaces. These results suggested that Aluminate-based coupling agent may play a useful role in improving wood powder/polypropylene composites properties.