The metal powder direct and rapid prototyping technology is one of the most developing methods in the laser rapid prototyping technique. The coaxial powder delivery system is the key technique. The purpose of this pap...The metal powder direct and rapid prototyping technology is one of the most developing methods in the laser rapid prototyping technique. The coaxial powder delivery system is the key technique. The purpose of this paper is to introduce a new type of coaxial powder delivery system and simulate the metal powder and shield gas flow in the powder nozzle. 2-D and 3-D model of the new coaxial powder delivery system are established. Then gas-solid two-phase flow model and the k-ε turbulent model are selected to simulate the flow of metal powder in powder nozzle. The Euler-Lagrange method is used in the simulating computation. The results show that the new coaxial powder delivery system has stable performance, uniform powder flux, high cooling efficiency, and long useful life.展开更多
The functionally gradient material laser rapid prototyping system is developed based on the increasing material manufacture idea of the rapid prototyping. The system hardware is composed of a 5 kW CO2 laser, a three-d...The functionally gradient material laser rapid prototyping system is developed based on the increasing material manufacture idea of the rapid prototyping. The system hardware is composed of a 5 kW CO2 laser, a three-dimensional numeric control table, a three-stock-bin coaxial powder delivery device, and an integration operation control desk. The system software is composed of the CAD slicing and scan filling module, materials component distributing design module, and hardware equipment integration drive module. The real time change proportion allocation technique of three metal powders, powder uniform mixing technique, and coaxial powder delivery technique are studied. According to the principle of the output powder cumulative volume invariable in unit time, the real time powder allocation formulae are deduced. The design method of the materials component distributing regularity in the part entity is studied. The gradient change regularity of the face gradient, line gradient, and point gradient is studied. A sort of the file layout of integrating material information and geometry information is brought forward.展开更多
Pollen-shape (spiked sphere) hydroxyapatite (HA) particles for drug carrier application are studied. The particle shape and size effect on flow characteristics and deposition are assessed. The pollen-shape HA part...Pollen-shape (spiked sphere) hydroxyapatite (HA) particles for drug carrier application are studied. The particle shape and size effect on flow characteristics and deposition are assessed. The pollen-shape HA particles are synthesized to have comparable size as typical carrier particles with mean diameter of 30-50 μm and effective density less than 0.3 g/cm^3. The flow behaviors of HA and commonly used lactose (LA) carrier particles are characterized by the Carr's compressibility index (CI). The HA particles have lower CI than the LA particles for the same size range. The flow fields of HA and LA carrier particles are measured in an idealized inhalation path model using particle image velocimetry (PLY) technique. The particle streamlines indicate that a large portion of particles may deposit at the bending section due to inertial impaction and gravitational deposition. The flow field result shows that HA particles give smaller separation regions than the LA particles for the same size range. The pollen-shape HA particles are found to be able to follow the gas flow in the model and minimize undesired deposition. Deposition result confirms the bending section to have the most deposition. Deposition is found to be a function of particle properties. An empirical correlation is derived for the deposition efficiency of the pollen-shape particles as a function of particles Stokes number.展开更多
文摘The metal powder direct and rapid prototyping technology is one of the most developing methods in the laser rapid prototyping technique. The coaxial powder delivery system is the key technique. The purpose of this paper is to introduce a new type of coaxial powder delivery system and simulate the metal powder and shield gas flow in the powder nozzle. 2-D and 3-D model of the new coaxial powder delivery system are established. Then gas-solid two-phase flow model and the k-ε turbulent model are selected to simulate the flow of metal powder in powder nozzle. The Euler-Lagrange method is used in the simulating computation. The results show that the new coaxial powder delivery system has stable performance, uniform powder flux, high cooling efficiency, and long useful life.
基金Supported by the National Defence Foundation of China(No. A3520061304)
文摘The functionally gradient material laser rapid prototyping system is developed based on the increasing material manufacture idea of the rapid prototyping. The system hardware is composed of a 5 kW CO2 laser, a three-dimensional numeric control table, a three-stock-bin coaxial powder delivery device, and an integration operation control desk. The system software is composed of the CAD slicing and scan filling module, materials component distributing design module, and hardware equipment integration drive module. The real time change proportion allocation technique of three metal powders, powder uniform mixing technique, and coaxial powder delivery technique are studied. According to the principle of the output powder cumulative volume invariable in unit time, the real time powder allocation formulae are deduced. The design method of the materials component distributing regularity in the part entity is studied. The gradient change regularity of the face gradient, line gradient, and point gradient is studied. A sort of the file layout of integrating material information and geometry information is brought forward.
文摘Pollen-shape (spiked sphere) hydroxyapatite (HA) particles for drug carrier application are studied. The particle shape and size effect on flow characteristics and deposition are assessed. The pollen-shape HA particles are synthesized to have comparable size as typical carrier particles with mean diameter of 30-50 μm and effective density less than 0.3 g/cm^3. The flow behaviors of HA and commonly used lactose (LA) carrier particles are characterized by the Carr's compressibility index (CI). The HA particles have lower CI than the LA particles for the same size range. The flow fields of HA and LA carrier particles are measured in an idealized inhalation path model using particle image velocimetry (PLY) technique. The particle streamlines indicate that a large portion of particles may deposit at the bending section due to inertial impaction and gravitational deposition. The flow field result shows that HA particles give smaller separation regions than the LA particles for the same size range. The pollen-shape HA particles are found to be able to follow the gas flow in the model and minimize undesired deposition. Deposition result confirms the bending section to have the most deposition. Deposition is found to be a function of particle properties. An empirical correlation is derived for the deposition efficiency of the pollen-shape particles as a function of particles Stokes number.