Four types of resins,P1–P4,are used as binders for FeSiBC amorphous powder,which are then press-molded and heat-treated to fabricate magnetic powder cores(MPCs).By testing the permeability,loss,density,and radial cru...Four types of resins,P1–P4,are used as binders for FeSiBC amorphous powder,which are then press-molded and heat-treated to fabricate magnetic powder cores(MPCs).By testing the permeability,loss,density,and radial crush strength of MPCs,the effect of the binder on the magnetic properties of the cores is investigated and the best resin is found.The results show that the silicone resin P3 exhibits the best thermal stability,retaining 82.1%of its mass after heat treatment at 430°C.This contributes to improving the insulation of MPCs and reducing the eddy current loss,which is 46.06 mW cm^(−3)(150 kHz,20 mT)with the mechanical strength of 11.13 MPa.The bonding of epoxy resin P4 is superior to that of other resins,which significantly improves the powder compactness and makes MPCs density reach 5.67 g cm^(−3),and its permeability is as high as 28.7.The two types of resins have different advantages,and both lead to MPCs with excellent properties.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically ...To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.展开更多
Silicon nanowires(SiNWs)have been used in a wide variety of applications over the past few decades due to their excellent material properties.The only drawback is the high production cost of SiNWs.The preparation of S...Silicon nanowires(SiNWs)have been used in a wide variety of applications over the past few decades due to their excellent material properties.The only drawback is the high production cost of SiNWs.The preparation of SiNWs from photovoltaic waste silicon(WSi)powders,which are high-volume industrial wastes,not only avoids the secondary energy consumption and environmental pollution caused by complicated recycling methods,but also realizes its high-value utilization.Herein,we present a method to rapidly convert photovoltaic WSi powders into SiNWs products.The flash heating and quenching provided by carbothermal shock induce the production of free silicon atoms from the WSi powders,which are rapidly reorganized and assembled into SiNWs during the vapor-phase process.This method allows for the one-step composite of SiNWs and carbon cloth(CC)and the formation of SiC at the interface of the silicon(Si)and carbon(C)contact to create a stable chemical connection.The obtained SiNWs-CC(SiNWs@CC)composites can be directly used as lithium anodes,exhibiting high initial coulombic efficiency(86.4%)and stable cycling specific capacity(2437.4 mA h g^(-1)at 0.5 A g^(-1)after 165 cycles).In addition,various SiNWs@C composite electrodes are easily prepared using this method.展开更多
Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit fr...Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.展开更多
BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory disease affecting the colon.The most common psychological issue in UC patients is varying degrees of depre-ssion,which affects the condition and quality of li...BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory disease affecting the colon.The most common psychological issue in UC patients is varying degrees of depre-ssion,which affects the condition and quality of life of UC patients and may lead to deterioration of the patient’s condition.UC drugs combined with anti-anxiety and antidepression drugs can alleviate symptoms of both depression and UC.Brain-derived neurotrophic factor(BDNF)precursor(proBDNF)/p75 neurotrophin receptor(p75NTR)/sortilin and BDNF/tropomyosin receptor kinase B(TrkB)signalling balance is essential for maintaining brain homeostasis and preventing the development of depressive behaviours.AIM To explore the mechanism by which Wuling powder regulates the proBDNF/p75NTR/sortilin and BDNF/TrkB pathways in the treatment of UC with depre-ssion.METHODS Depression was established in C57BL/6J mice via chronic restraint stress,and the UC model was induced with dextran sodium sulfate(DSS).In the treatment stage,mesalazine(MS)was the basic treatment,Wuling powder was the experimental treatment,and fluoxetine was the positive control drug for treating depression.Changes in intestinal mucosal inflammation,behaviour,and the proBDNFp75NTR/sortilin and BDNF/TrkB pathways were evaluated.RESULTS In the depression groups,Wuling powder decreased the immobility time,increased the distance travelled in the central zone and the total distance travelled,and restored balance in the proBDNF/p75NTR/sortilin and BDNF/TrkB signalling pathways.In the DSS and chronic restraint stress+DSS groups,immobility time increased,distance travelled in the central zone and total distance travelled decreased,activity of the proBDNF/p75NTR/sortilin pathway was upregulated,and activity of the BDNF/TrkB pathway was downregulated,indicating that mice with UC often have comorbid depression.Compared with those of MS alone,Wuling powder combined with MS further decreased the colon histopathological scores and the expression levels of tumor necrosis factor-alpha and interleukin-6 mRNAs.CONCLUSION This study confirmed that Wuling powder may play an antidepressant role by regulating the balance of the proBDNF/p75NTR/sortilin and BDNF/TrkB signalling pathways and further relieve intestinal inflammation in UC.展开更多
This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature...This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains.展开更多
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li...In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applicati...Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.展开更多
Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at hig...Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.展开更多
To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0....To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys.展开更多
Through a modified inherent strain model based on the minimum residual stress and deformation,three building schemes with different building postures and support structures were evaluated by finite element analysis.Re...Through a modified inherent strain model based on the minimum residual stress and deformation,three building schemes with different building postures and support structures were evaluated by finite element analysis.Results demonstrate that according to the principle of reducing the overall height of the building and reducing the support structure with a large tilt angle from the building direction,the residual stress and deformation can be effectively reduced by proper design of building posture and support before laser powder bed melting.Moreover,without the data of thermophysical property variation of Ti-6Al-4V artificial knee implants with temperature,predicting the residual stress and deformation with acceptable accuracy and reduced time cost can be achieved by the inherent strain model.展开更多
The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solu...The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solution concentration,and leaching solution temperature on the leaching behavior of elements Al and V was investigated.Results demonstrate that the leaching rate of Al and V is increased with the rise in leaching solution temperature,the increase in HCl solution concentration,and the enlargement of magnesiothermic self-propagating product particle size.The leaching processes of Al and V are consistent with the chemical reaction control model.When the magnesiothermic self-propagation product with D_(50) of 59.4μm is selected as the raw material,the leaching temperature is 40℃,and 1 mol/L HCl solution is employed,after leaching for 180 min,the leaching rates of Al and V are 24.8%and 12.6%,respectively.The acid-leached product exhibits a porous structure with a specific surface area of 3.5633 m^(2)/g.展开更多
Increasing concern over the amount of insecticide residues in food has encouraged research for ecologically sound strategies to effectively manage stored-product insect pests and protect living organisms and the envir...Increasing concern over the amount of insecticide residues in food has encouraged research for ecologically sound strategies to effectively manage stored-product insect pests and protect living organisms and the environment. Botanicals were evaluated as potential alternatives to control maize weevil, Sitophilus zeamais Motschulsky, in stored sorghum, Sorghum bicolor (L.) Moench. Beetles and moths of stored grain at farm and consumer levels damage 5 - 35% worldwide and >40% in tropical countries. Maize weevil is the most damaging storage insect of sorghum grain. Management of storage insects relies on insecticides that leave residues in food and the environment. Treatments were powders of neem bark, Azadirachta indica;mesquite pods, Prosopis glandulosa;milkweed leaves, Asclepias speciosa;and a check (no botanical powder). Eight newly emerged maize weevils were provided 5 g of Malisor-84 grain treated with three doses of each plant powder. Every 2 days, data were recorded on the number of adults killed by each treatment. Percentage killed was calculated by dose per treatment and compared with the check. Grain loss was calculated based on initial and final weights. LD50 was determined by probit analysis, and associations between variables were assessed by simple linear correlation. Powder of mesquite and milkweed at 0.2 g were more effective than neem or the check in killing S. zeamais (>90%) and reducing grain damage (34 - 35.2%) and weight loss (0.8%). Milkweed at 0.1 g and neem at 0.2 g killed 78.1% of weevils. Neem at 0.05 g was slow acting, resulting in 62.5% dead and more grain damage (59.5%) and weight loss (3.6%). Botanicals at low doses (LD50 = 0.2 - 0.4 g) showed efficacy in controlling maize weevils and are recommended alternatives to guarantee quantity and quality of stored cereal grains.展开更多
The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from o...The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from oyster shell farming. However, there is a lack of evidence on the possibility of producing a fully recycled composite consisting of recycled concrete and oyster shell without the need for new cement and natural aggregates. In this study, recycled concrete powder (RCP) and oyster shell were used to produce a green composite. Separate ground and combined ground (separate ground and co-ground) RCP and oyster shells are used to determine the effects of grinding approaches on the mechanical and chemical properties of the composite. The composite samples were molded via press molding by applying 30 MPa of pressure for 10 minutes. The results revealed that the composite prepared via the combined ground approach presented the highest flexural strength compared to the separate ground and unground samples. The FTIR and XRD characterization results revealed no chemical or phase alterations in the raw materials or the resulting composites before and after grinding. SEM analysis revealed that combined grinding reduced the particles’ size and improved the dispersion of the mixture, thereby increasing the strength.展开更多
[Objectives]To investigate the use of the classical Chinese medicine formula Sihu Powder modified decoction for postoperative fumigation and sitz bath in patients with perianal abscess,aiming to promote wound healing ...[Objectives]To investigate the use of the classical Chinese medicine formula Sihu Powder modified decoction for postoperative fumigation and sitz bath in patients with perianal abscess,aiming to promote wound healing and reduce medical burden.[Methods]An observational cohort study was conducted,selecting 200 patients with perianal abscess who underwent surgery in Shenzhen Guangming District People's Hospital.They were randomly divided into a treatment group and an observation group,with 100 cases in each group.Both groups followed the same surgical and antibiotic treatment principles.Starting from the first postoperative day,the treatment group received fumigation and sitz bath with modified Sihu Powder for decoction twice daily;the observation group used Compound Huangbai Liquid for fumigation and sitz bath twice daily.Indicators including pain score,wound secretion score,wound granulation tissue growth score,multidrug-resistant bacterial infection clearance rate,antibiotic usage days,and wound healing rate were observed in both groups 7,14 and 21 d after operation.[Results]On postoperative day 7,the differences in postoperative pain score,wound secretions,and multidrug-resistant bacterial clearance rate between the treatment group and the observation group were statistically significant.On postoperative day 14,the differences between the two groups were significant in indicators including pain score,wound secretions,wound granulation tissue growth,multidrug-resistant bacterial clearance rate,and wound healing rate.On postoperative day 21,the difference in wound healing rate between the two groups was significant;furthermore,the antibiotic usage days in the treatment group were significantly fewer than those in the observation group.[Conclusions]Modified Sihu Powder for fumigation and washing can effectively alleviate postoperative pain in perianal abscess patients,inhibit the colonization and infection of multidrug-resistant bacteria at the wound site,accelerate wound healing,reduce antibiotic usage intensity and medical burden.It possesses advantages such as being economical,effective,safe,and easy to operate,making it worthy of clinical promotion.展开更多
Rubbery waste at the end of the cycle often constitutes a threat for the environment because of their encumbrance and low biodeterioration.The purpose of the research presented is to develop the rubber fine powder as ...Rubbery waste at the end of the cycle often constitutes a threat for the environment because of their encumbrance and low biodeterioration.The purpose of the research presented is to develop the rubber fine powder as a pavement.It is interested primarily in the behavior of two types of bitumen 40/50 modified by the addition of two varieties of rubber fine powders of different grading,resulting from the crushing of the rubbery products intended for the clothes industry of soles of shoes.The objective of the experimentation is to study the influence of the added polymer on the physical properties of the ordinary road bitumen with the incorporation of the fine powder.The experimental approach is carried out using the two tests of characterization of the bitumen i.e.the softening point test and the penetration test which remain the most used to define and classify the road bitumen.It will be noted however,that the experimental investigation which is based on several tests according to the type and the content of fine powders,leads on a whole of interesting correlations.展开更多
To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency...To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency,and energy are investigated for powders of different polarities.Although the powders have low charge-to-mass ratios(+0.087μC/kg for the positively charged powders and−0.26μC/kg for the negatively charged ones),electrostatic discharges occur approximately every 10 s,with the maximum discharge energy being 800 mJ.Powder polarity considerably influences discharge energy.The positive powders exhibit higher discharge energy than the negative ones,although discharge frequency remains similar for both.Effects of powder charge,humidity,and mass flow on discharge frequency and discharge energy are quantitatively analyzed,providing important insights for the improvement of safety in industrial powder handling.展开更多
Control of N-nitrosodimethylamine(NDMA)in drinking water could be achieved by removing its precursors as one practical way.Herein,superfine powdered activated carbons with a diameter of about 1μm(SPACs)were successfu...Control of N-nitrosodimethylamine(NDMA)in drinking water could be achieved by removing its precursors as one practical way.Herein,superfine powdered activated carbons with a diameter of about 1μm(SPACs)were successfully prepared by grinding powdered activated carbon(PAC,D50=24.3μm)and applied to remove model NDMA precursors,i.e.ranitidine(RAN)and nizatidine(NIZ).Results fromgrain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size,and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ.Moreover,kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path.Furthermore,performance comparison experiments suggested that the removal of RAN and NIZ(C_(0)=0.5 mg/L)could reach 61.3%and 60%,respectively,within 5 min,when the dosage of SAPC-1.1(D_(50)=1.1μm)was merely 5 mg/L,while PAC-24.3 could only eliminate 17.5%and 18.6%.The adsorption isotherm was well defined by Langmuir isotherm model,indicating that the adsorption of RAN/NIZ was a monolayer coverage process.The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent,and high adsorption capacity could be observed under the condition of pH>pk_(a)+1.The coexistence of humic acid(HA)had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously.The coexistence of anions had little effect on the adsorption also.This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.展开更多
基金financially supported by the Key research and development project of Shandong province in China(Grant No.2022CXGC020308).
文摘Four types of resins,P1–P4,are used as binders for FeSiBC amorphous powder,which are then press-molded and heat-treated to fabricate magnetic powder cores(MPCs).By testing the permeability,loss,density,and radial crush strength of MPCs,the effect of the binder on the magnetic properties of the cores is investigated and the best resin is found.The results show that the silicone resin P3 exhibits the best thermal stability,retaining 82.1%of its mass after heat treatment at 430°C.This contributes to improving the insulation of MPCs and reducing the eddy current loss,which is 46.06 mW cm^(−3)(150 kHz,20 mT)with the mechanical strength of 11.13 MPa.The bonding of epoxy resin P4 is superior to that of other resins,which significantly improves the powder compactness and makes MPCs density reach 5.67 g cm^(−3),and its permeability is as high as 28.7.The two types of resins have different advantages,and both lead to MPCs with excellent properties.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
基金supported by Fundamental Research Funds for the Central Universities(300102214908)Innovation Capability Support Program of Shaanxi(2022TD-07).
文摘To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.
基金partially funded by the National Natural Science Foundation of China(52074255,52274412)。
文摘Silicon nanowires(SiNWs)have been used in a wide variety of applications over the past few decades due to their excellent material properties.The only drawback is the high production cost of SiNWs.The preparation of SiNWs from photovoltaic waste silicon(WSi)powders,which are high-volume industrial wastes,not only avoids the secondary energy consumption and environmental pollution caused by complicated recycling methods,but also realizes its high-value utilization.Herein,we present a method to rapidly convert photovoltaic WSi powders into SiNWs products.The flash heating and quenching provided by carbothermal shock induce the production of free silicon atoms from the WSi powders,which are rapidly reorganized and assembled into SiNWs during the vapor-phase process.This method allows for the one-step composite of SiNWs and carbon cloth(CC)and the formation of SiC at the interface of the silicon(Si)and carbon(C)contact to create a stable chemical connection.The obtained SiNWs-CC(SiNWs@CC)composites can be directly used as lithium anodes,exhibiting high initial coulombic efficiency(86.4%)and stable cycling specific capacity(2437.4 mA h g^(-1)at 0.5 A g^(-1)after 165 cycles).In addition,various SiNWs@C composite electrodes are easily prepared using this method.
基金supported by the National Natural Science Foundation of China(Nos.52275395,51935014,and 82072084)the Science and Technology Innovation Program of Hunan Province(No.2023RC3046)+4 种基金the Young Elite Scientists Sponsorship Program byCAST(No.2020QNRC002)the NationalKeyResearchand Development Program of China(No.2023YFB4605800)the Central South University Innovation-Driven Research Programme(No.2023CXQD023)the Jiangxi Provincial Natural Science Foundation of China(No.20224ACB204013)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University.
文摘Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.
文摘BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory disease affecting the colon.The most common psychological issue in UC patients is varying degrees of depre-ssion,which affects the condition and quality of life of UC patients and may lead to deterioration of the patient’s condition.UC drugs combined with anti-anxiety and antidepression drugs can alleviate symptoms of both depression and UC.Brain-derived neurotrophic factor(BDNF)precursor(proBDNF)/p75 neurotrophin receptor(p75NTR)/sortilin and BDNF/tropomyosin receptor kinase B(TrkB)signalling balance is essential for maintaining brain homeostasis and preventing the development of depressive behaviours.AIM To explore the mechanism by which Wuling powder regulates the proBDNF/p75NTR/sortilin and BDNF/TrkB pathways in the treatment of UC with depre-ssion.METHODS Depression was established in C57BL/6J mice via chronic restraint stress,and the UC model was induced with dextran sodium sulfate(DSS).In the treatment stage,mesalazine(MS)was the basic treatment,Wuling powder was the experimental treatment,and fluoxetine was the positive control drug for treating depression.Changes in intestinal mucosal inflammation,behaviour,and the proBDNFp75NTR/sortilin and BDNF/TrkB pathways were evaluated.RESULTS In the depression groups,Wuling powder decreased the immobility time,increased the distance travelled in the central zone and the total distance travelled,and restored balance in the proBDNF/p75NTR/sortilin and BDNF/TrkB signalling pathways.In the DSS and chronic restraint stress+DSS groups,immobility time increased,distance travelled in the central zone and total distance travelled decreased,activity of the proBDNF/p75NTR/sortilin pathway was upregulated,and activity of the BDNF/TrkB pathway was downregulated,indicating that mice with UC often have comorbid depression.Compared with those of MS alone,Wuling powder combined with MS further decreased the colon histopathological scores and the expression levels of tumor necrosis factor-alpha and interleukin-6 mRNAs.CONCLUSION This study confirmed that Wuling powder may play an antidepressant role by regulating the balance of the proBDNF/p75NTR/sortilin and BDNF/TrkB signalling pathways and further relieve intestinal inflammation in UC.
基金supported by the National Natural Science Foundation of China(Grant Nos.52205140,52175129)the Outstanding Youth Foundation of Hunan Province(Grant No.2023JJ20041)the Science and Technology Innovation Program of Hunan Province(2023RC3241).
文摘This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52108260)China Academy of Railway Sciences Fund(No.2021YJ078)+1 种基金Railway Engineering Construction Standard Project(No.2023-BZWW-006)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金financed by the European Union-Next Generation EU(National Sustainable Mobility Center CN00000023,Italian Ministry of University and Research Decree n.1033-17/06/2022,Spoke 11-Innovative Materials&Lightweighting)。
文摘Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.
文摘Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.
基金National Natural Science Foundation of China(52105385)Stable Support Plan Program of Shenzhen Natural Science Fund(20220810132537001)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515010781)Joint Fund of Henan Province Science and Technology R&D Program(225200810002)Fundamental Research Funds of Henan Academy of Sciences(240621041)。
文摘To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys.
基金Natural Science Foundation of Shandong Province(ZR2020ME020)。
文摘Through a modified inherent strain model based on the minimum residual stress and deformation,three building schemes with different building postures and support structures were evaluated by finite element analysis.Results demonstrate that according to the principle of reducing the overall height of the building and reducing the support structure with a large tilt angle from the building direction,the residual stress and deformation can be effectively reduced by proper design of building posture and support before laser powder bed melting.Moreover,without the data of thermophysical property variation of Ti-6Al-4V artificial knee implants with temperature,predicting the residual stress and deformation with acceptable accuracy and reduced time cost can be achieved by the inherent strain model.
基金Scientific and Technological Project of Nanyang(23KJGG017)Key Specialized Research&Development and Promotion Project(Scientific and Technological Project)of Henan Province(232102221022)+1 种基金College Students and Technology Innovation Fund Project of Nanyang Institute of Technology(2023139)Project of Doctoral Scientific Research Startup Fund of Nanyang Institute of Technology(NGBJ-2023-25)。
文摘The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solution concentration,and leaching solution temperature on the leaching behavior of elements Al and V was investigated.Results demonstrate that the leaching rate of Al and V is increased with the rise in leaching solution temperature,the increase in HCl solution concentration,and the enlargement of magnesiothermic self-propagating product particle size.The leaching processes of Al and V are consistent with the chemical reaction control model.When the magnesiothermic self-propagation product with D_(50) of 59.4μm is selected as the raw material,the leaching temperature is 40℃,and 1 mol/L HCl solution is employed,after leaching for 180 min,the leaching rates of Al and V are 24.8%and 12.6%,respectively.The acid-leached product exhibits a porous structure with a specific surface area of 3.5633 m^(2)/g.
文摘Increasing concern over the amount of insecticide residues in food has encouraged research for ecologically sound strategies to effectively manage stored-product insect pests and protect living organisms and the environment. Botanicals were evaluated as potential alternatives to control maize weevil, Sitophilus zeamais Motschulsky, in stored sorghum, Sorghum bicolor (L.) Moench. Beetles and moths of stored grain at farm and consumer levels damage 5 - 35% worldwide and >40% in tropical countries. Maize weevil is the most damaging storage insect of sorghum grain. Management of storage insects relies on insecticides that leave residues in food and the environment. Treatments were powders of neem bark, Azadirachta indica;mesquite pods, Prosopis glandulosa;milkweed leaves, Asclepias speciosa;and a check (no botanical powder). Eight newly emerged maize weevils were provided 5 g of Malisor-84 grain treated with three doses of each plant powder. Every 2 days, data were recorded on the number of adults killed by each treatment. Percentage killed was calculated by dose per treatment and compared with the check. Grain loss was calculated based on initial and final weights. LD50 was determined by probit analysis, and associations between variables were assessed by simple linear correlation. Powder of mesquite and milkweed at 0.2 g were more effective than neem or the check in killing S. zeamais (>90%) and reducing grain damage (34 - 35.2%) and weight loss (0.8%). Milkweed at 0.1 g and neem at 0.2 g killed 78.1% of weevils. Neem at 0.05 g was slow acting, resulting in 62.5% dead and more grain damage (59.5%) and weight loss (3.6%). Botanicals at low doses (LD50 = 0.2 - 0.4 g) showed efficacy in controlling maize weevils and are recommended alternatives to guarantee quantity and quality of stored cereal grains.
文摘The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from oyster shell farming. However, there is a lack of evidence on the possibility of producing a fully recycled composite consisting of recycled concrete and oyster shell without the need for new cement and natural aggregates. In this study, recycled concrete powder (RCP) and oyster shell were used to produce a green composite. Separate ground and combined ground (separate ground and co-ground) RCP and oyster shells are used to determine the effects of grinding approaches on the mechanical and chemical properties of the composite. The composite samples were molded via press molding by applying 30 MPa of pressure for 10 minutes. The results revealed that the composite prepared via the combined ground approach presented the highest flexural strength compared to the separate ground and unground samples. The FTIR and XRD characterization results revealed no chemical or phase alterations in the raw materials or the resulting composites before and after grinding. SEM analysis revealed that combined grinding reduced the particles’ size and improved the dispersion of the mixture, thereby increasing the strength.
基金Supported by Shenzhen Guangming District Health System Scientific Research Project(2020R01120).
文摘[Objectives]To investigate the use of the classical Chinese medicine formula Sihu Powder modified decoction for postoperative fumigation and sitz bath in patients with perianal abscess,aiming to promote wound healing and reduce medical burden.[Methods]An observational cohort study was conducted,selecting 200 patients with perianal abscess who underwent surgery in Shenzhen Guangming District People's Hospital.They were randomly divided into a treatment group and an observation group,with 100 cases in each group.Both groups followed the same surgical and antibiotic treatment principles.Starting from the first postoperative day,the treatment group received fumigation and sitz bath with modified Sihu Powder for decoction twice daily;the observation group used Compound Huangbai Liquid for fumigation and sitz bath twice daily.Indicators including pain score,wound secretion score,wound granulation tissue growth score,multidrug-resistant bacterial infection clearance rate,antibiotic usage days,and wound healing rate were observed in both groups 7,14 and 21 d after operation.[Results]On postoperative day 7,the differences in postoperative pain score,wound secretions,and multidrug-resistant bacterial clearance rate between the treatment group and the observation group were statistically significant.On postoperative day 14,the differences between the two groups were significant in indicators including pain score,wound secretions,wound granulation tissue growth,multidrug-resistant bacterial clearance rate,and wound healing rate.On postoperative day 21,the difference in wound healing rate between the two groups was significant;furthermore,the antibiotic usage days in the treatment group were significantly fewer than those in the observation group.[Conclusions]Modified Sihu Powder for fumigation and washing can effectively alleviate postoperative pain in perianal abscess patients,inhibit the colonization and infection of multidrug-resistant bacteria at the wound site,accelerate wound healing,reduce antibiotic usage intensity and medical burden.It possesses advantages such as being economical,effective,safe,and easy to operate,making it worthy of clinical promotion.
文摘Rubbery waste at the end of the cycle often constitutes a threat for the environment because of their encumbrance and low biodeterioration.The purpose of the research presented is to develop the rubber fine powder as a pavement.It is interested primarily in the behavior of two types of bitumen 40/50 modified by the addition of two varieties of rubber fine powders of different grading,resulting from the crushing of the rubbery products intended for the clothes industry of soles of shoes.The objective of the experimentation is to study the influence of the added polymer on the physical properties of the ordinary road bitumen with the incorporation of the fine powder.The experimental approach is carried out using the two tests of characterization of the bitumen i.e.the softening point test and the penetration test which remain the most used to define and classify the road bitumen.It will be noted however,that the experimental investigation which is based on several tests according to the type and the content of fine powders,leads on a whole of interesting correlations.
基金The National Natural Science Foundation of China(No.51976039)。
文摘To explore the electrostatic discharge behavior of charged powders in industrial silos,discharge experiments are conducted based on a full-size industrial silo discharge platform.Electrostatic discharge mode,frequency,and energy are investigated for powders of different polarities.Although the powders have low charge-to-mass ratios(+0.087μC/kg for the positively charged powders and−0.26μC/kg for the negatively charged ones),electrostatic discharges occur approximately every 10 s,with the maximum discharge energy being 800 mJ.Powder polarity considerably influences discharge energy.The positive powders exhibit higher discharge energy than the negative ones,although discharge frequency remains similar for both.Effects of powder charge,humidity,and mass flow on discharge frequency and discharge energy are quantitatively analyzed,providing important insights for the improvement of safety in industrial powder handling.
基金supported by the Key Technology Research and Development Program of Shandong(No.2020CXGC011406)the National Natural Science Foundation of China(No.22076091)the State Key Joint Laboratory of Environment Simulation and Pollution Control,China(No.21L01ESPC).
文摘Control of N-nitrosodimethylamine(NDMA)in drinking water could be achieved by removing its precursors as one practical way.Herein,superfine powdered activated carbons with a diameter of about 1μm(SPACs)were successfully prepared by grinding powdered activated carbon(PAC,D50=24.3μm)and applied to remove model NDMA precursors,i.e.ranitidine(RAN)and nizatidine(NIZ).Results fromgrain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size,and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ.Moreover,kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path.Furthermore,performance comparison experiments suggested that the removal of RAN and NIZ(C_(0)=0.5 mg/L)could reach 61.3%and 60%,respectively,within 5 min,when the dosage of SAPC-1.1(D_(50)=1.1μm)was merely 5 mg/L,while PAC-24.3 could only eliminate 17.5%and 18.6%.The adsorption isotherm was well defined by Langmuir isotherm model,indicating that the adsorption of RAN/NIZ was a monolayer coverage process.The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent,and high adsorption capacity could be observed under the condition of pH>pk_(a)+1.The coexistence of humic acid(HA)had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously.The coexistence of anions had little effect on the adsorption also.This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.