China has pledged to peak carbon dioxide(CO_(2))emissions by 2030 and achieve carbon neutrality by 2060.Carbon capture and storage(CCS)will play a key role in these efforts.Over the past several years,the China Geolog...China has pledged to peak carbon dioxide(CO_(2))emissions by 2030 and achieve carbon neutrality by 2060.Carbon capture and storage(CCS)will play a key role in these efforts.Over the past several years,the China Geological Survey(CGS)has completed the Suitability Evaluation Map of CO_(2)Geological Storage in Main Sedimentary Basins in China and Adjacent Sea Regions in 2017.This map reflects the suitability of the first-and secondary-order tectonic units within sedimentary basins for cO_(2)geological storage for CCS planning.The Junggar Basin is recognized as an important region for future CCS projects.Results from a mesoscale evaluation using the volume method indicate that deep saline aquifers represent the most significant resources for CO_(2)storage,with potential ranging from 48×10^(9)to 164×10^(9)t(with a P50 value of 96×10^(9)t).The highest storage potential is identified in the central and northern parts of the basin,reaching up to 9.5×10^(6)t/km^(2)at the P50 probability level.In contrast,the hinterland,eastern,and western parts of the basin generally exhibit storage potential of below 1.0×10^(6)t/km^(2)at the same probability level.The CGs has also characterized historical CO_(2)plume migration in reservoirs at the storage site of the Shenhua CCS demonstration project and conducted numerical simulations of CO_(2)plume migration for periods of 10 and 20 years following the shutdown of the injection well.The CGS implemented a kiloton-scale pilot test on CO_(2)-enhanced water recovery(CO_(2)-EWR)in eastern Junggar,revealing that CO_(2)flooding can improve the pressure for fluid production,with the highest ratio of CO_(2)to produced fluids estimated at approximately 1.2.Besides,an observation field for natural CO_(2)leakage,covering about 930 m^(2),was built in Qinghai Province.In natural CO_(2)fields or at artificial CO_(2)injection research sites,cO_(2)leakage points are primarily related to the distribution of faults(especially fault crossing),which can serve as pathways for CO_(2)leakage.The observation field provides a natural analog to wellbore failure and offers an opportunity to further monitor CO_(2)geological storage sites.However,it has been inferred that borehole ZK10 at the observation field has become a leakage pathway due to the drilling activities,inadequate well-plugging,and abandonment procedures without considering CO_(2)corrosion.展开更多
基金funded by the National Natural Science Foundation of China(No.42141013)China Geological Survey(DD20221818,DD20242513).
文摘China has pledged to peak carbon dioxide(CO_(2))emissions by 2030 and achieve carbon neutrality by 2060.Carbon capture and storage(CCS)will play a key role in these efforts.Over the past several years,the China Geological Survey(CGS)has completed the Suitability Evaluation Map of CO_(2)Geological Storage in Main Sedimentary Basins in China and Adjacent Sea Regions in 2017.This map reflects the suitability of the first-and secondary-order tectonic units within sedimentary basins for cO_(2)geological storage for CCS planning.The Junggar Basin is recognized as an important region for future CCS projects.Results from a mesoscale evaluation using the volume method indicate that deep saline aquifers represent the most significant resources for CO_(2)storage,with potential ranging from 48×10^(9)to 164×10^(9)t(with a P50 value of 96×10^(9)t).The highest storage potential is identified in the central and northern parts of the basin,reaching up to 9.5×10^(6)t/km^(2)at the P50 probability level.In contrast,the hinterland,eastern,and western parts of the basin generally exhibit storage potential of below 1.0×10^(6)t/km^(2)at the same probability level.The CGs has also characterized historical CO_(2)plume migration in reservoirs at the storage site of the Shenhua CCS demonstration project and conducted numerical simulations of CO_(2)plume migration for periods of 10 and 20 years following the shutdown of the injection well.The CGS implemented a kiloton-scale pilot test on CO_(2)-enhanced water recovery(CO_(2)-EWR)in eastern Junggar,revealing that CO_(2)flooding can improve the pressure for fluid production,with the highest ratio of CO_(2)to produced fluids estimated at approximately 1.2.Besides,an observation field for natural CO_(2)leakage,covering about 930 m^(2),was built in Qinghai Province.In natural CO_(2)fields or at artificial CO_(2)injection research sites,cO_(2)leakage points are primarily related to the distribution of faults(especially fault crossing),which can serve as pathways for CO_(2)leakage.The observation field provides a natural analog to wellbore failure and offers an opportunity to further monitor CO_(2)geological storage sites.However,it has been inferred that borehole ZK10 at the observation field has become a leakage pathway due to the drilling activities,inadequate well-plugging,and abandonment procedures without considering CO_(2)corrosion.