Three exact solutions are obtained for 2-D incompressible potential flows around two moving circles in three cases: (i) expansion (or contraction) of themselves, (ii) approaching (or departing from) each other, (iii) ...Three exact solutions are obtained for 2-D incompressible potential flows around two moving circles in three cases: (i) expansion (or contraction) of themselves, (ii) approaching (or departing from) each other, (iii) moving perpendicularly to the line connecting the centres in opposite directions. Meanwhile, an- other set of two exact solutions is obtained for 2-D incompressible potential flows between two moving eccen- tric circles in two cases: moving parallelly or perpendicularly to the line connecting the centres.展开更多
In this paper we consider(hierarchical,Lagrange)reduced basis approximation and a posteriori error estimation for potential flows in affinely parametrized geometries.We review the essential ingredients:i)a Galerkin pr...In this paper we consider(hierarchical,Lagrange)reduced basis approximation and a posteriori error estimation for potential flows in affinely parametrized geometries.We review the essential ingredients:i)a Galerkin projection onto a lowdimensional space associated with a smooth“parametric manifold”in order to get a dimension reduction;ii)an efficient and effective greedy sampling method for identification of optimal and numerically stable approximations to have a rapid convergence;iii)an a posteriori error estimation procedure:rigorous and sharp bounds for the linearfunctional outputs of interest and over the potential solution or related quantities of interest like velocity and/or pressure;iv)an Offline-Online computational decomposition strategies to achieve a minimum marginal computational cost for high performance in the real-time and many-query(e.g.,design and optimization)contexts.We present three illustrative results for inviscid potential flows in parametrized geometries representing a Venturi channel,a circular bend and an added mass problem.展开更多
The Wenchuan earthquake caused numerous landslides and collapses that provide abundant unconsolidated material for future mobilization as debris flows.Debris flows will be very active and cause considerable damage for...The Wenchuan earthquake caused numerous landslides and collapses that provide abundant unconsolidated material for future mobilization as debris flows.Debris flows will be very active and cause considerable damage for some time in the affected area.Because of environmental changes related to the earthquake,many potentially dangerous debris flow gullies have yet to be identified.This paper selects the upper Min River from Yinxiu to Wenchuan as the study area,interprets the unconsolidated deposits,and discusses their relationship to distance from the fault.Then,applying that information and the values of other factors relating to debris flow occurrence,the locations of potential debris flows are analyzed by multi-factor comprehensive identification and rapid identification.The multi-factor comprehensive identification employs fuzzy matter-element extension theory.The volume of unconsolidated material in the study area is about 3.28 × 108 m3.According to the analysis by multi-factor comprehensive identification,47 gullies have a high probability for potential debris flow,8 gullies have a moderate probability,and 1 gully has a low probability.展开更多
Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential f...Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential flows and difference of neutron proton collective flows are sensitive to the momentum-dependent symmetry potential. This sensitivity is less affected by both the isoscalar part of nuclear equation of state and in-medium nucleon- nucleon cross sections. Moreover, this sensitivity becomes pronounced with increasing the rapidity cut.展开更多
A fast multipole methodology (FMM) is developed as a numerical approach to reduce the computational cost andmemory requirements in solving large-scale problems. It is applied to the boundary element method (BEM) for t...A fast multipole methodology (FMM) is developed as a numerical approach to reduce the computational cost andmemory requirements in solving large-scale problems. It is applied to the boundary element method (BEM) for three-dimensional potential flow problems. The algorithm based on mixed multipole expansion and numerical integration isimplemented in combination with an iterative solver. Numerical examinations, on Dirichlet and Neumann problems,are carried out to demonstrate the capability and accuracy of the present method. It has been shown that the methodhas evident advantages in saving memory and computing time when used to solve huge-scale problems which may beprohibitive for the traditional BEM implementation.展开更多
To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By us...To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By using the continuity equation and Tait state equation as well as Riabouchinsky closure model, an“inverse problem”solution is presented for the supercavitating flow. According to the impenetrable condition on the surface of supercavity, a new iterative method for the supercavity shape is designed to deal with the effect of compressibility on the supercavity shape, pressure drag coefficient and density field. By this method, the very low cavitation number can be computed. The calculated results agree well with the experimental data and empirical formula. At the subsonic condition, the fluid compressibility will make supercavity length and radius increase. The supercavity expands, but remains spheroid. The effect on the first 1/3 part of supercavity is not obvious. The drag coefficient of projectile increases as the cavitation number or Mach number increases. With Mach number increasing, the compressibility is more and more significant. The compressibility must be considered as far as the accurate calculation of supercavitating flow is concerned.展开更多
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ...A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.展开更多
Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wa...Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wave interaction of the focused wave group with different frequency bands and input wave amplitudes is examined,by which the influence of free surface nonlinearity and fluid viscosity on the related phenomenon of focused wave is investigated.The significant influence of free surface nonlinearity on the characteristics of focused wave can be observed,including the increased focused wave crest,delayed focused time and downstream shift of focused position with the increase of input amplitude.It can plot the evident difference between the results of the nonlinear potential flow and linear potential flow models.However,only a little discrepancy between the nonlinear potential flow and viscous fluid flow models can be observed,implying the insignificant effect of fluid viscosity on focused wave behavior.Therefore,the nonlinear potential flow model is recommended for simulating the non-breaking focused wave problem in this study.展开更多
Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the ch...Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.展开更多
Analysis of rotorcraft dynamics requires solution of the rotor induced flow field.Often,the appropriate model to be used for induced flow is nonlinear potential flow theory(which is the basis of vortex-lattice method...Analysis of rotorcraft dynamics requires solution of the rotor induced flow field.Often,the appropriate model to be used for induced flow is nonlinear potential flow theory(which is the basis of vortex-lattice methods).These nonlinear potential flow equations sometimes must be solved in real time––such as for real-time flight simulation,when observers are needed for controllers,or in preliminary design computations.In this paper,the major effects of nonlinearities on induced flow are studied for lifting rotors in low-speed flight and hover.The approach is to use a nonlinear statespace model of the induced flow based on a Galerkin treatment of the potential flow equations.展开更多
Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia...Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.展开更多
A doublet integral equation is formulated for the two-dimensional dissipative potential flow around a hydrofoil submerged below a free-water surface. The free-water surface is assumed to involve energy dissipation, an...A doublet integral equation is formulated for the two-dimensional dissipative potential flow around a hydrofoil submerged below a free-water surface. The free-water surface is assumed to involve energy dissipation, and thus it is the source of damping. A doublet panel method is developed from incorporation of the dissipative Green function approach and the doublet distributions on the hydrofoil surface. Numerical computations are implemented, and the derived numerical results are in good agreement with analytic solutions and experimental measurements.展开更多
Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple...Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple space dimensions, and it is strictly convex in ρ, v if and only if |v| 〈 c. For motivation some simple variations on the relative entropy theme of Dafer- mos/DiPerna are given, for example that smooth regions of weak entropy solutions shrink at finite speed, and that smooth solutions force solutions of singular entropy-compatible per- turbations to converge to them. We conjecture that entropy weak solutions of compressible potential flow are unique, in contrast to the known counterexamples for the Euler equations.展开更多
By using Cauchy's integral formula of analytical complex function and the third order complex spline function, a general boundary solution method for solving the complex potential field of the flow field around a...By using Cauchy's integral formula of analytical complex function and the third order complex spline function, a general boundary solution method for solving the complex potential field of the flow field around a 2D semi infinite body is presented in this paper. The pressure coefficients obtained by the present method agree well with those given by Acrivous, showing the validity of our method.展开更多
In order to calculate the mooring force of a new semi-submerged Ocean Farm quickly and accurately,based on the unsteady time-domain potential flow theory and combined the catenary model,the control equation of mooring...In order to calculate the mooring force of a new semi-submerged Ocean Farm quickly and accurately,based on the unsteady time-domain potential flow theory and combined the catenary model,the control equation of mooring cable is established,and the mooring force of the platform under the wave spectrum is calculated.First of all,based on the actual situation of the ocean environment and platform,the mooring design of the platform is carried out,and the failure analysis and sensitivity analysis of the single anchor chain by the time domain coupling method are adopted:including different water depth,cycle,pretension size,anchor chain layout direction and wind speed,etc.The analysis results confirm the reliability of anchoring method.Based on this,the mooring point location of the platform is determined,the force of each anchor chain in the anchoring process is calculated,and the mooring force and the number of mooring cables are obtained for each cable that satisfies the specification,the results of this paper can provide theoretical calculation methods for mooring setting and mooring force calculation of similar offshore platforms.展开更多
The effective smoke preventing installation should have the functions such as absolute smoke insulation, going into and coming off the smoke preventing place freely, no confinement of sight. The smoke preventing ai...The effective smoke preventing installation should have the functions such as absolute smoke insulation, going into and coming off the smoke preventing place freely, no confinement of sight. The smoke preventing air curtain is the most effective. Based on the previous researches done by others, the flow field is theoretically analyzed and the calculating method for the smoke preventing air curtain of high rise buildings is inferred by means of mathematics in this paper.展开更多
The problem is solved by use of the boundary integral equation method and the high order finite element discretization on the assumption that the flow of water is inviscid, incompressible and irrotational, and the bub...The problem is solved by use of the boundary integral equation method and the high order finite element discretization on the assumption that the flow of water is inviscid, incompressible and irrotational, and the bubble gas obeys the isoentropic rule. The evolution of bubble is simulated by means of mixed Euler-Lagrangian method. The comparison of the numerical results with the 'exact solution' of a spheric bub ble and experimental data shows that the mathematical model is reasonable and the 3-D numerical method has high accuracy. Important behaviour of bubble, such as immigration and jetting, and dynamic load on an ellipsoid near explosion are derived.展开更多
The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of...The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.展开更多
A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring sys...A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring system are calculated according to the catenary theory, which are expressed as the function of linear stiffness coefficients and the displacements of the upper ends of mooring chains. The hydrodynamic coefficients of the ship are calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for ships with a low forward speed. The equations of ship motions are established with the effect of the restoring forces from the mooring system included as linear stiffness coefficients. The equations of motions are solved in frequency domain, and the responses of wave-induced motions and loads on the ship can be obtained. A computer pro gram based on this method has been developed,and some calculation examples are illustrated. Analysis results show that the method can give satisfying prediction of wave loads.展开更多
文摘Three exact solutions are obtained for 2-D incompressible potential flows around two moving circles in three cases: (i) expansion (or contraction) of themselves, (ii) approaching (or departing from) each other, (iii) moving perpendicularly to the line connecting the centres in opposite directions. Meanwhile, an- other set of two exact solutions is obtained for 2-D incompressible potential flows between two moving eccen- tric circles in two cases: moving parallelly or perpendicularly to the line connecting the centres.
文摘In this paper we consider(hierarchical,Lagrange)reduced basis approximation and a posteriori error estimation for potential flows in affinely parametrized geometries.We review the essential ingredients:i)a Galerkin projection onto a lowdimensional space associated with a smooth“parametric manifold”in order to get a dimension reduction;ii)an efficient and effective greedy sampling method for identification of optimal and numerically stable approximations to have a rapid convergence;iii)an a posteriori error estimation procedure:rigorous and sharp bounds for the linearfunctional outputs of interest and over the potential solution or related quantities of interest like velocity and/or pressure;iv)an Offline-Online computational decomposition strategies to achieve a minimum marginal computational cost for high performance in the real-time and many-query(e.g.,design and optimization)contexts.We present three illustrative results for inviscid potential flows in parametrized geometries representing a Venturi channel,a circular bend and an added mass problem.
基金supported by the 973 Program (2008CB425803)the Project group of the Knowledge Innovation Program (Kzcx2-Yw-Q03-5-2)National Natural Science Foundation of China (Grant No. 40901008)
文摘The Wenchuan earthquake caused numerous landslides and collapses that provide abundant unconsolidated material for future mobilization as debris flows.Debris flows will be very active and cause considerable damage for some time in the affected area.Because of environmental changes related to the earthquake,many potentially dangerous debris flow gullies have yet to be identified.This paper selects the upper Min River from Yinxiu to Wenchuan as the study area,interprets the unconsolidated deposits,and discusses their relationship to distance from the fault.Then,applying that information and the values of other factors relating to debris flow occurrence,the locations of potential debris flows are analyzed by multi-factor comprehensive identification and rapid identification.The multi-factor comprehensive identification employs fuzzy matter-element extension theory.The volume of unconsolidated material in the study area is about 3.28 × 108 m3.According to the analysis by multi-factor comprehensive identification,47 gullies have a high probability for potential debris flow,8 gullies have a moderate probability,and 1 gully has a low probability.
基金Supported by the National Natural Science Foundation of China under Grant No 11505150the Yuncheng University Research Project under Grant No YQ-2014014the China Postdoctoral Science Foundation under Grant No 2015M582730
文摘Within the isospin-dependent quantum molecular dynamics model, we investigate the nuclear collective flows produced in semi-central 197 Au+197 Au collisions at intermediate energies. The neutron proton differential flows and difference of neutron proton collective flows are sensitive to the momentum-dependent symmetry potential. This sensitivity is less affected by both the isoscalar part of nuclear equation of state and in-medium nucleon- nucleon cross sections. Moreover, this sensitivity becomes pronounced with increasing the rapidity cut.
基金This work was sponsored by the National Natural Science Foundation of China for Distinguished Young Scholars under contract No,50025924the Research Foundation for the Doctoral Program of Higher Education of China under contract No.20030141006.
文摘A fast multipole methodology (FMM) is developed as a numerical approach to reduce the computational cost andmemory requirements in solving large-scale problems. It is applied to the boundary element method (BEM) for three-dimensional potential flow problems. The algorithm based on mixed multipole expansion and numerical integration isimplemented in combination with an iterative solver. Numerical examinations, on Dirichlet and Neumann problems,are carried out to demonstrate the capability and accuracy of the present method. It has been shown that the methodhas evident advantages in saving memory and computing time when used to solve huge-scale problems which may beprohibitive for the traditional BEM implementation.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 51309230), and China Postdoctoral Science Foundation (Nos. 2014T70992 and 2013 M542531)We would like to thank Dr. Tao Miao for closely following our work and making several useful suggestions.
文摘To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By using the continuity equation and Tait state equation as well as Riabouchinsky closure model, an“inverse problem”solution is presented for the supercavitating flow. According to the impenetrable condition on the surface of supercavity, a new iterative method for the supercavity shape is designed to deal with the effect of compressibility on the supercavity shape, pressure drag coefficient and density field. By this method, the very low cavitation number can be computed. The calculated results agree well with the experimental data and empirical formula. At the subsonic condition, the fluid compressibility will make supercavity length and radius increase. The supercavity expands, but remains spheroid. The effect on the first 1/3 part of supercavity is not obvious. The drag coefficient of projectile increases as the cavitation number or Mach number increases. With Mach number increasing, the compressibility is more and more significant. The compressibility must be considered as far as the accurate calculation of supercavitating flow is concerned.
基金supported by the Yunnan Provincial Applied Basic Research Program of China(No. KKSY201207019)
文摘A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.
基金the National Natural Science Foundation of China(Grant Nos.51909027 and 51679035),the Project of Educational Commission of Liaoning Province(Grant No.L201601),the High-Level Innovation and Entrepreneurship Team of Liaoning Province(Grant No.XLYC1908027),the Fundamental Research Funds for the Central Universities(Grant No.DUT2017TB05).
文摘Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wave interaction of the focused wave group with different frequency bands and input wave amplitudes is examined,by which the influence of free surface nonlinearity and fluid viscosity on the related phenomenon of focused wave is investigated.The significant influence of free surface nonlinearity on the characteristics of focused wave can be observed,including the increased focused wave crest,delayed focused time and downstream shift of focused position with the increase of input amplitude.It can plot the evident difference between the results of the nonlinear potential flow and linear potential flow models.However,only a little discrepancy between the nonlinear potential flow and viscous fluid flow models can be observed,implying the insignificant effect of fluid viscosity on focused wave behavior.Therefore,the nonlinear potential flow model is recommended for simulating the non-breaking focused wave problem in this study.
文摘Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.
基金co-supported by the National Natural Science Foundation of China(No.51375104)the Heilongjiang Province Funds for Distinguished Young Scientists(No.JC201405)+1 种基金the China Postdoctoral Science Foundation(No.2015M581433)the Postdoctoral Science Foundation of Heilongjiang Province(No.LBH-Z15038)
文摘Analysis of rotorcraft dynamics requires solution of the rotor induced flow field.Often,the appropriate model to be used for induced flow is nonlinear potential flow theory(which is the basis of vortex-lattice methods).These nonlinear potential flow equations sometimes must be solved in real time––such as for real-time flight simulation,when observers are needed for controllers,or in preliminary design computations.In this paper,the major effects of nonlinearities on induced flow are studied for lifting rotors in low-speed flight and hover.The approach is to use a nonlinear statespace model of the induced flow based on a Galerkin treatment of the potential flow equations.
基金financially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2022R1I1A1A01069442)the 2024 Hongik University Research Fund。
文摘Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.
文摘A doublet integral equation is formulated for the two-dimensional dissipative potential flow around a hydrofoil submerged below a free-water surface. The free-water surface is assumed to involve energy dissipation, and thus it is the source of damping. A doublet panel method is developed from incorporation of the dissipative Green function approach and the doublet distributions on the hydrofoil surface. Numerical computations are implemented, and the derived numerical results are in good agreement with analytic solutions and experimental measurements.
基金partially supported by the National Science Foundation under Grant No.NSF DMS-1054115a Sloan Foundation Research Fellowship
文摘Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple space dimensions, and it is strictly convex in ρ, v if and only if |v| 〈 c. For motivation some simple variations on the relative entropy theme of Dafer- mos/DiPerna are given, for example that smooth regions of weak entropy solutions shrink at finite speed, and that smooth solutions force solutions of singular entropy-compatible per- turbations to converge to them. We conjecture that entropy weak solutions of compressible potential flow are unique, in contrast to the known counterexamples for the Euler equations.
文摘By using Cauchy's integral formula of analytical complex function and the third order complex spline function, a general boundary solution method for solving the complex potential field of the flow field around a 2D semi infinite body is presented in this paper. The pressure coefficients obtained by the present method agree well with those given by Acrivous, showing the validity of our method.
基金This research was supported by the National Natural Science Foundation of China(No.51779135,51009087)Shanghai Natural Science Foundation of China(project approval number:14ZR1419500).
文摘In order to calculate the mooring force of a new semi-submerged Ocean Farm quickly and accurately,based on the unsteady time-domain potential flow theory and combined the catenary model,the control equation of mooring cable is established,and the mooring force of the platform under the wave spectrum is calculated.First of all,based on the actual situation of the ocean environment and platform,the mooring design of the platform is carried out,and the failure analysis and sensitivity analysis of the single anchor chain by the time domain coupling method are adopted:including different water depth,cycle,pretension size,anchor chain layout direction and wind speed,etc.The analysis results confirm the reliability of anchoring method.Based on this,the mooring point location of the platform is determined,the force of each anchor chain in the anchoring process is calculated,and the mooring force and the number of mooring cables are obtained for each cable that satisfies the specification,the results of this paper can provide theoretical calculation methods for mooring setting and mooring force calculation of similar offshore platforms.
文摘The effective smoke preventing installation should have the functions such as absolute smoke insulation, going into and coming off the smoke preventing place freely, no confinement of sight. The smoke preventing air curtain is the most effective. Based on the previous researches done by others, the flow field is theoretically analyzed and the calculating method for the smoke preventing air curtain of high rise buildings is inferred by means of mathematics in this paper.
文摘The problem is solved by use of the boundary integral equation method and the high order finite element discretization on the assumption that the flow of water is inviscid, incompressible and irrotational, and the bubble gas obeys the isoentropic rule. The evolution of bubble is simulated by means of mixed Euler-Lagrangian method. The comparison of the numerical results with the 'exact solution' of a spheric bub ble and experimental data shows that the mathematical model is reasonable and the 3-D numerical method has high accuracy. Important behaviour of bubble, such as immigration and jetting, and dynamic load on an ellipsoid near explosion are derived.
文摘The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.
文摘A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring system are calculated according to the catenary theory, which are expressed as the function of linear stiffness coefficients and the displacements of the upper ends of mooring chains. The hydrodynamic coefficients of the ship are calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for ships with a low forward speed. The equations of ship motions are established with the effect of the restoring forces from the mooring system included as linear stiffness coefficients. The equations of motions are solved in frequency domain, and the responses of wave-induced motions and loads on the ship can be obtained. A computer pro gram based on this method has been developed,and some calculation examples are illustrated. Analysis results show that the method can give satisfying prediction of wave loads.