Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos...Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.展开更多
Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose o...Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years,such as scale-invariant feature transform,histogram of oriented gradients,support vectormachine(SVM),Gaussian mixturemodel,dynamic time warping,hiddenMarkovmodel(HMM),lightweight network,convolutional neural network(CNN).We also investigate improved methods of CNN,such as stacked hourglass networks,multi-stage pose estimation networks,convolutional posemachines,and high-resolution nets.The general process and datasets of posture recognition are analyzed and summarized,and several improved CNNmethods and threemain recognition techniques are compared.In addition,the applications of advanced neural networks in posture recognition,such as transfer learning,ensemble learning,graph neural networks,and explainable deep neural networks,are introduced.It was found that CNN has achieved great success in posture recognition and is favored by researchers.Still,a more in-depth research is needed in feature extraction,information fusion,and other aspects.Among classification methods,HMM and SVM are the most widely used,and lightweight network gradually attracts the attention of researchers.In addition,due to the lack of 3Dbenchmark data sets,data generation is a critical research direction.展开更多
This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognit...This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly,the deep convolutional network is integrated with the Mediapipe framework to extract high-precision,multi-dimensional information from the key points of the human skeleton,thereby obtaining a human posture feature set.Thereafter,a double-layer BiGRU algorithm is utilized to extract multi-layer,bidirectional temporal features from the human posture feature set,and a CNN network with an exponential linear unit(ELU)activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore,a squeeze and excitation networks(SENet)module is introduced to adaptively learn the importance weights of each channel,enhancing the network’s focus on important features.Finally,comparative experiments are performed on available datasets,including the public human activity recognition using smartphone dataset(UCIHAR),the public human activity recognition 70 plus dataset(HAR70PLUS),and the independently developed home abnormal behavior recognition dataset(HABRD)created by the authors’team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%,89.42%,and 98.90%,respectively,which are 5.24%,5.83%,and 3.19%higher than the average accuracy of the five models proposed in the comparative literature,including CNN,GRU,and others.The F1-score for abnormal posture recognition reaches 98.84%(heartache),97.18%(fall),99.6%(bellyache),and 98.27%(climbing)on the self-builtHABRDdataset,thus verifying the effectiveness,generalization,and robustness of the proposed model in enhancing human posture recognition.展开更多
Achieving human skin-like sensitivity and wide-range pressure detection remains a significant challenge in the developmentof wearable pressure sensors.In this study,we engineered and fabricated a fibrous polyimide fib...Achieving human skin-like sensitivity and wide-range pressure detection remains a significant challenge in the developmentof wearable pressure sensors.In this study,we engineered and fabricated a fibrous polyimide fiber(PIF)/carbon nanotube(CNT)composite aerogel with a gradient structure using a layer-by-layer freeze casting technique,aiming to overcome thelimitations of traditional pressure sensors.Finite element analysis(FEA)reveals that this innovative gradient structure mimicsthe unique microstructure of human skin,enabling the sensor to detect a broad spectrum of pressure stimuli,ranging fromsubtle pressures as low as 10 Pa to intense pressures up to 1.58 MPa with exceptional sensitivity.Moreover,the sensor exhibitsextraordinary pressure resolution across the entire pressure range,particularly at 1 MPa(0.001%).Additionally,the sensordemonstrates remarkable thermal stability,operating reliably across a wide temperature range from−150 to 200°C,makingit suitable for extreme environments such as deep space exploration.When integrated with machine learning algorithms,thesensor shows great potential for real-time physiological monitoring,fitness tracking,and motion recognition.The proposedgradient fibrous pressure sensor,with its high sensitivity and resolution over a wide pressure range,paves the way for newopportunities in human–machine interaction.展开更多
With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors we...With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.展开更多
Smart healthcare applications depend on data from wearable sensors(WSs)mounted on a patient’s body for frequent monitoring information.Healthcare systems depend on multi-level data for detecting illnesses and consequ...Smart healthcare applications depend on data from wearable sensors(WSs)mounted on a patient’s body for frequent monitoring information.Healthcare systems depend on multi-level data for detecting illnesses and consequently delivering correct diagnostic measures.The collection of WS data and integration of that data for diagnostic purposes is a difficult task.This paper proposes an Errorless Data Fusion(EDF)approach to increase posture recognition accuracy.The research is based on a case study in a health organization.With the rise in smart healthcare systems,WS data fusion necessitates careful attention to provide sensitive analysis of the recognized illness.As a result,it is dependent on WS inputs and performs group analysis at a similar rate to improve diagnostic efficiency.Sensor breakdowns,the constant time factor,aggregation,and analysis results all cause errors,resulting in rejected or incorrect suggestions.This paper resolves this problem by using EDF,which is related to patient situational discovery through healthcare surveillance systems.Features of WS data are examined extensively using active and iterative learning to identify errors in specific postures.This technology improves position detection accuracy,analysis duration,and error rate,regardless of user movements.Wearable devices play a critical role in the management and treatment of patients.They can ensure that patients are provided with a unique treatment for their medical needs.This paper discusses the EDF technique for optimizing posture identification accuracy through multi-feature analysis.At first,the patients’walking patterns are tracked at various time intervals.The characteristics are then evaluated in relation to the stored data using a random forest classifier.展开更多
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science&Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
基金supported by British Heart Foundation Accelerator Award,UK(AA/18/3/34220)Royal Society International Exchanges Cost Share Award,UK(RP202G0230)+7 种基金Hope Foundation for Cancer Research,UK(RM60G0680)Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)Sino-UK Industrial Fund,UK(RP202G0289)Global Challenges Research Fund(GCRF),UK(P202PF11)LIAS Pioneering Partnerships award,UK(P202ED10)Data Science Enhancement Fund,UK(P202RE237)Fight for Sight,UK(24NN201)Sino-UK Education Fund,UK(OP202006).
文摘Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years,such as scale-invariant feature transform,histogram of oriented gradients,support vectormachine(SVM),Gaussian mixturemodel,dynamic time warping,hiddenMarkovmodel(HMM),lightweight network,convolutional neural network(CNN).We also investigate improved methods of CNN,such as stacked hourglass networks,multi-stage pose estimation networks,convolutional posemachines,and high-resolution nets.The general process and datasets of posture recognition are analyzed and summarized,and several improved CNNmethods and threemain recognition techniques are compared.In addition,the applications of advanced neural networks in posture recognition,such as transfer learning,ensemble learning,graph neural networks,and explainable deep neural networks,are introduced.It was found that CNN has achieved great success in posture recognition and is favored by researchers.Still,a more in-depth research is needed in feature extraction,information fusion,and other aspects.Among classification methods,HMM and SVM are the most widely used,and lightweight network gradually attracts the attention of researchers.In addition,due to the lack of 3Dbenchmark data sets,data generation is a critical research direction.
基金funded by the Henan Provincial Science and Technology Research Project(222102210086)the Starry Sky Creative Space Innovation Space Innovation Incubation Project of Zhengzhou University of Light Industry(2023ZCKJ211).
文摘This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly,the deep convolutional network is integrated with the Mediapipe framework to extract high-precision,multi-dimensional information from the key points of the human skeleton,thereby obtaining a human posture feature set.Thereafter,a double-layer BiGRU algorithm is utilized to extract multi-layer,bidirectional temporal features from the human posture feature set,and a CNN network with an exponential linear unit(ELU)activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore,a squeeze and excitation networks(SENet)module is introduced to adaptively learn the importance weights of each channel,enhancing the network’s focus on important features.Finally,comparative experiments are performed on available datasets,including the public human activity recognition using smartphone dataset(UCIHAR),the public human activity recognition 70 plus dataset(HAR70PLUS),and the independently developed home abnormal behavior recognition dataset(HABRD)created by the authors’team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%,89.42%,and 98.90%,respectively,which are 5.24%,5.83%,and 3.19%higher than the average accuracy of the five models proposed in the comparative literature,including CNN,GRU,and others.The F1-score for abnormal posture recognition reaches 98.84%(heartache),97.18%(fall),99.6%(bellyache),and 98.27%(climbing)on the self-builtHABRDdataset,thus verifying the effectiveness,generalization,and robustness of the proposed model in enhancing human posture recognition.
基金National Natural Science Foundation of China(52373093)Excellent Youth Found of Natural Science Foundation of Henan Province(242300421062)Central Plains Youth Top notch Talent Program of Henan Province,and the 111 project(D18023).
文摘Achieving human skin-like sensitivity and wide-range pressure detection remains a significant challenge in the developmentof wearable pressure sensors.In this study,we engineered and fabricated a fibrous polyimide fiber(PIF)/carbon nanotube(CNT)composite aerogel with a gradient structure using a layer-by-layer freeze casting technique,aiming to overcome thelimitations of traditional pressure sensors.Finite element analysis(FEA)reveals that this innovative gradient structure mimicsthe unique microstructure of human skin,enabling the sensor to detect a broad spectrum of pressure stimuli,ranging fromsubtle pressures as low as 10 Pa to intense pressures up to 1.58 MPa with exceptional sensitivity.Moreover,the sensor exhibitsextraordinary pressure resolution across the entire pressure range,particularly at 1 MPa(0.001%).Additionally,the sensordemonstrates remarkable thermal stability,operating reliably across a wide temperature range from−150 to 200°C,makingit suitable for extreme environments such as deep space exploration.When integrated with machine learning algorithms,thesensor shows great potential for real-time physiological monitoring,fitness tracking,and motion recognition.The proposedgradient fibrous pressure sensor,with its high sensitivity and resolution over a wide pressure range,paves the way for newopportunities in human–machine interaction.
文摘With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.
文摘Smart healthcare applications depend on data from wearable sensors(WSs)mounted on a patient’s body for frequent monitoring information.Healthcare systems depend on multi-level data for detecting illnesses and consequently delivering correct diagnostic measures.The collection of WS data and integration of that data for diagnostic purposes is a difficult task.This paper proposes an Errorless Data Fusion(EDF)approach to increase posture recognition accuracy.The research is based on a case study in a health organization.With the rise in smart healthcare systems,WS data fusion necessitates careful attention to provide sensitive analysis of the recognized illness.As a result,it is dependent on WS inputs and performs group analysis at a similar rate to improve diagnostic efficiency.Sensor breakdowns,the constant time factor,aggregation,and analysis results all cause errors,resulting in rejected or incorrect suggestions.This paper resolves this problem by using EDF,which is related to patient situational discovery through healthcare surveillance systems.Features of WS data are examined extensively using active and iterative learning to identify errors in specific postures.This technology improves position detection accuracy,analysis duration,and error rate,regardless of user movements.Wearable devices play a critical role in the management and treatment of patients.They can ensure that patients are provided with a unique treatment for their medical needs.This paper discusses the EDF technique for optimizing posture identification accuracy through multi-feature analysis.At first,the patients’walking patterns are tracked at various time intervals.The characteristics are then evaluated in relation to the stored data using a random forest classifier.