期刊文献+
共找到59,770篇文章
< 1 2 250 >
每页显示 20 50 100
Protein post-translational modifications in auxin signaling 被引量:3
1
作者 Xiankui Cui Junxia Wang +3 位作者 Ke Li Bingsheng Lv Bingkai Hou Zhaojun Ding 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2024年第3期279-291,共13页
Protein post-translational modifications(PTMs),such as ubiquitination,phosphorylation,and small ubiquitin-like modifier(SUMO)ylation,are crucial for regulating protein stability,activity,subcellular localization,and b... Protein post-translational modifications(PTMs),such as ubiquitination,phosphorylation,and small ubiquitin-like modifier(SUMO)ylation,are crucial for regulating protein stability,activity,subcellular localization,and binding with cofactors.Such modifications remarkably increase the variety and complexity of proteomes,which are essential for regulating numerous cellular and physiological processes.The regulation of auxin signaling is finely tuned in time and space to guide various plant growth and development.Accumulating evidence indicates that PTMs play critical roles in auxin signaling regulations.Thus,a thorough and systematic review of the functions of PTMs in auxin signal transduction will improve our profound comprehension of the regulation mechanism of auxin signaling and auxin-mediated various processes.This review discusses the progress of protein ubiquitination,phosphorylation,histone acetylation and methylation,SUMOylation,and S-nitrosylation in the regulation of auxin signaling. 展开更多
关键词 Arabidopsis thaliana AUXIN Auxin signaling post-translational modifications Protein regulation
原文传递
Systematic Analysis of Post-Translational Modifications for Increased Longevity of Biotherapeutic Proteins
2
作者 Justin Kim Karanveer Sadiora 《Computational Molecular Bioscience》 2024年第3期125-145,共21页
Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and... Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins. 展开更多
关键词 post-translational modification Protein-Based Therapeutics Therapeutic Half-Life Protein Aggregation Protein Reception
暂未订购
Post-translational modifications of prostaglandin-endoperoxide synthase 2 in colorectal cancer:An update 被引量:8
3
作者 Rafael I Jaén Patricia Prieto +2 位作者 Marta Casado Paloma Martín-Sanz Lisardo Boscá 《World Journal of Gastroenterology》 SCIE CAS 2018年第48期5454-5461,共8页
The biosynthesis of prostanoids is involved in both physiological and pathological processes.The expression of prostaglandin-endoperoxide synthase 2(PTGS2;also known as COX-2)has been traditionally associated to the o... The biosynthesis of prostanoids is involved in both physiological and pathological processes.The expression of prostaglandin-endoperoxide synthase 2(PTGS2;also known as COX-2)has been traditionally associated to the onset of several pathologies,from inflammation to cardiovascular,gastrointestinal and oncologic events.For this reason,the search of selective PTGS2 inhibitors has been a focus for therapeutic interventions.In addition to the classic non-steroidal anti-inflammatory drugs,selective and specific PTGS2 inhibitors,termed coxibs,have been generated and widely used.PTGS2 activity is less restrictive in terms of substrate specificity than the homeostatic counterpart PTGS1,and it accounts for the elevated prostanoid synthesis that accompanies several pathologies.The main regulation of PTGS2 occurs at the transcription level.In addition to this,the stability of the mRNA is finely regulated through the interaction with several cytoplasmic elements,ranging from specificmicroR NAs to proteins that control mR NA degradation.Moreover,the protein has been recognized to be the substrate for several post-translational modifications that affect both the enzyme activity and the targeting for degradation via proteasomal and non-proteasomal mechanisms.Among these modifications,phosphorylation,glycosylation and covalent modifications by reactive lipidic intermediates and by free radicals associated to the proinflammatory condition appear to be the main changes.Identification of these post-translational modifications is relevant to better understand the role of PTGS2 in several pathologies and to establish a correct analysis of the potential function of this protein in diseases progress.Finally,these modifications can be used as biomarkers to establish correlations with other parameters,including the immunomodulation dependent on molecular pathological epidemiology determinants,which may provide a better frame for potential therapeutic interventions. 展开更多
关键词 PROSTAGLANDINS Prostaglandin-endoperoxide synthase 2 post-translational modifications GLYCOSYLATION Colorectal cancer INFLAMMATION
暂未订购
Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions 被引量:4
4
作者 Carolina Colleti Talita Diniz Melo-Hanchuk +2 位作者 Flavia Regina Moraes da Silva Angela Saito Jorg Kobarg 《World Journal of Biological Chemistry》 2019年第3期44-64,共21页
The 57 kDa antigen recognized by the Ki-1 antibody,is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7%identity and 67.4%similarity with serpin mRNA binding protein 1,which is also named C... The 57 kDa antigen recognized by the Ki-1 antibody,is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7%identity and 67.4%similarity with serpin mRNA binding protein 1,which is also named CGI-55,or plasminogen activator inhibitor type-1-RNA binding protein-1,indicating that they might be paralog proteins,possibly with similar or redundant functions in human cells.Through the identification of their protein interactomes,both regulatory proteins have been functionally implicated in transcriptional regulation,mRNA metabolism,specifically RNA splicing,the regulation of mRNA stability,especially,in the context of the progesterone hormone response,and the DNA damage response.Both proteins also show a complex pattern of post-translational modifications,involving Ser/Thr phosphorylation,mainly through protein kinase C,arginine methylation and SUMOylation,suggesting that their functions and locations are highly regulated.Furthermore,they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies,upon stress,and nuclear splicing speckles.Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis.This review highlights important aspects of the structure,interactome,post-translational modifications,sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings. 展开更多
关键词 CANCER Cell signaling Regulatory protein Protein interactions post-translational modifications
暂未订购
Protein post-translational modifications after spinal cord injury 被引量:3
5
作者 Shuang Zhu Bing-Sheng Yang +7 位作者 Si-Jing Li Ge Tong Jian-Ye Tan Guo-Feng Wu Lin Li Guo-Li Chen Qian Chen Li-Jun Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第10期1935-1943,共9页
Deficits in intrinsic neuronal capacities in the spinal cord,a lack of growth support,and suppression of axonal outgrowth by inhibitory molecules mean that spinal cord injury almost always has devastating consequences... Deficits in intrinsic neuronal capacities in the spinal cord,a lack of growth support,and suppression of axonal outgrowth by inhibitory molecules mean that spinal cord injury almost always has devastating consequences.As such,one of the primary targets for the treatment of spinal cord injury is to develop strategies to antagonize extrinsic or intrinsic axonal growth-inhibitory factors or enhance the factors that support axonal growth.Among these factors,a series of individual protein level disorders have been identified during the generation of axons following spinal cord injury.Moreover,an increasing number of studies have indicated that post-translational modifications of these proteins have important implications for axonal growth.Some researchers have discovered a variety of post-translational modifications after spinal cord injury,such as tyrosination,acetylation,and phosphorylation.In this review,we reviewed the post-translational modifications for axonal growth,functional recovery,and neuropathic pain after spinal cord injury,a better understanding of which may elucidate the dynamic change of spinal cord injury-related molecules and facilitate the development of a new therapeutic strategy for spinal cord injury. 展开更多
关键词 extracellular matrix function impairment glial scar nerve regeneration neuropathic pain post-translational modification spinal cord injury therapeutic target
暂未订购
The role of post-translational modifications of huntingtin in the pathogenesis of Huntington's disease 被引量:1
6
作者 王雁 林芳 秦正红 《Neuroscience Bulletin》 SCIE CAS CSCD 2010年第2期153-162,共10页
Post-translational modifications are rapid, effective and reversible ways to regulate protein stability, localization, function, and their interactions with other molecules. Post-translational modifications usually oc... Post-translational modifications are rapid, effective and reversible ways to regulate protein stability, localization, function, and their interactions with other molecules. Post-translational modifications usually occur as chemical modifications at amino acid residues, including SUMOylation, phosphorylation, palmitoylation, acetylation, etc. These complex biochemical modifications tightly regulate and control a variety of cellular processes. Several forms of post-translational modifications of huntingtin (Htt) have been described. These modifications affect Htt metabolism, protein-protein interactions and cellular toxicity. Cleavage and clearance of mutant Htt, and the interactions between mutant Htt and other cellular proteins are important biochemical events leading to Huntington's disease (HD). Therefore, identifying signaling pathways of Htt modification and evaluating the significance of Htt modifications would lead to a better understanding of the normal function of wild-type Htt and the pathogenic mechanisms of mutant Htt. 展开更多
关键词 Huntington's disease HUNTINGTIN modification SUMOYLATION PHOSPHORYLATION PALMITOYLATION ACETYLATION
原文传递
Post-translational modifications of hepatitis C viral proteins and their biological significance 被引量:2
7
作者 Jana Hundt Zhubing Li Qiang Liu 《World Journal of Gastroenterology》 SCIE CAS 2013年第47期8929-8939,共11页
Replication of hepatitis C virus(HCV)depends on the interaction of viral proteins with various host cellular proteins and signalling pathways.Similar to cellular proteins,post-translational modifications(PTMs)of HCV p... Replication of hepatitis C virus(HCV)depends on the interaction of viral proteins with various host cellular proteins and signalling pathways.Similar to cellular proteins,post-translational modifications(PTMs)of HCV proteins are essential for proper protein function and regulation,thus,directly affecting viral life cycle and the generation of infectious virus particles.Cleavage of the HCV polyprotein by cellular and viral proteases into more than 10 proteins represents an early protein modification step after translation of the HCV positivestranded RNA genome.The key modifications include the regulated intramembranous proteolytic cleavage of core protein,disulfide bond formation of core,glycosylation of HCV envelope proteins E1 and E2,methylation of nonstructural protein 3(NS3),biotinylation of NS4A,ubiquitination of NS5B and phosphorylation of core and NS5B.Other modifications like ubiquitination of core and palmitoylation of core and NS4B proteins have been reported as well.For some modifications such as phosphorylation of NS3 and NS5A and acetylation of NS3,we have limited understanding of their effects on HCV replication and pathogenesis while the impact of other modifications is far from clear.In this review,we summarize the available information on PTMs of HCV proteins and discuss their relevance to HCV replication and pathogenesis. 展开更多
关键词 HEPATITIS C VIRUS HEPATITIS C VIRUS PROTEINS post-translational modifications of PROTEINS HEPATITIS C VIRUS REPLICATION HEPATITIS C VIRUS PATHOGENESIS
暂未订购
Computer-Assisted analysis of subcellular localization signals and post-translational modifications of human prion proteins
8
作者 Fatemeh Moosawi Hassan Mohabatkar 《Journal of Biomedical Science and Engineering》 2009年第1期70-75,共6页
In the present work, computational analyses were applied to study the subcellular localiza-tion and posttranslational modifications of hu-man prion proteins (PrPs). The tentative location of prion protein was determin... In the present work, computational analyses were applied to study the subcellular localiza-tion and posttranslational modifications of hu-man prion proteins (PrPs). The tentative location of prion protein was determined to be in the nu-cleolus inside the nucleus by the following bio-informatics tools: Hum-PLoc, Euk-PLoc and Nuc-PLoc. Based on our results signal peptides with average of 22 base pairs in N-terminal were identified in human PrPs. This theoretical study demonstrates that PrP is post-translationally modified by: 1) attachment of two N-linked complex carbohydrate moieties (N181 and N197), 2) attachmet of glycosylphosphatidylinositol (GPI) at serine 230 and 3) formation of two di-sulfide bonds between “6–22” and “179–214” cysteines. Furthermore, ten protein kinase phosphorylation sites were predicted in human PrP. The above-noted phosphorylation was car-ried out by PKC and CK2. By using bioinfor-matics tools, we have shown that computation-ally human PrPs locate particularly into the nu-cleolus. 展开更多
关键词 PRION protein SUBCELLULAR localization Signal PEPTIDES post-translational modifications BIOINFORMATICS
暂未订购
Post-translational modifications of collagen and its related diseases in metabolic pathways
9
作者 Linghong Guo Weiyi Xiang +2 位作者 Zhaoping Pan He Gu Xian Jiang 《Acta Pharmaceutica Sinica B》 2025年第4期1773-1795,共23页
As the most abundant and essential structural protein in the human body,collagen is ubiquitously present in the interstitium of nearly all solid organs,playing a crucial role in maintaining the structural integrity an... As the most abundant and essential structural protein in the human body,collagen is ubiquitously present in the interstitium of nearly all solid organs,playing a crucial role in maintaining the structural integrity and functional stability of human tissues and organs.Disorders associated with collagen structure and metabolisms impose a significant burden on society and healthcare systems.Posttranslational modifications(PTMs)are essential steps in collagen metabolism,and recent studies have indicated that aberrant regulation of PTMs plays a pivotal role in the pathogenesis and progress of collagen-related disorders,including liver,kidney,heart,lung,and skin fibrosis,as well as keloid.This review provides a comprehensive summary of the regulatory mechanisms of both traditional and novel PTMs in collagen metabolism and collagen-related diseases.Furthermore,we summarize the drugs that modulate PTMs and their effects,with the aim of elucidating the pathophysiology of collagen-related diseases and provide new insights for their diagnosis,prevention,and treatment. 展开更多
关键词 COLLAGEN Collagen metabolism FIBROSIS post-translational modifications Epigenetic modification EPIGENETICS DISEASES PHARMACOLOGY
原文传递
Post-translational modifications in osteogenic differentiation of oralderived stem cells:Mechanisms and clinical implications
10
作者 Zhuo-Jin Shi Wei Liu 《World Journal of Stem Cells》 2025年第9期79-96,共18页
Osteogenesis is driven by the differentiation of osteoblasts and the mineralization of the bone matrix,with oral-derived stem cells playing a significant role in this process.Various post-translational modifications(P... Osteogenesis is driven by the differentiation of osteoblasts and the mineralization of the bone matrix,with oral-derived stem cells playing a significant role in this process.Various post-translational modifications(PTMs),such as phosphorylation,acetylation,methylation,and glycosylation,regulate osteogenic differentiation(OD).These modifications influence the expression of osteogenic genes by modulating the activity of key transcription factors like runt-related transcription factor 2 and osterix.While the molecular mechanisms behind OD are increasingly understood,many questions remain,particularly regarding how PTMs control the specificity and efficiency of stem cell differentiation.Recent research into these modifications has underscored the potential of stem cell therapy for bone regeneration and treating bone-related diseases.This review summarizes the role of PTMs in the OD of oral-derived stem cells,discusses their clinical applications,and suggests future research directions. 展开更多
关键词 Oral-derived stem cells post-translational modifications Osteogenic differentiation Bone regeneration Signaling pathways Clinical translation
暂未订购
The multifaceted role of post-translational modifications of LSD1 in cellular processes and disease pathogenesis
11
作者 Yinrui Li Bo Wang +9 位作者 Yichao Zheng Huiqin Kang Ang He Lijuan Zhao Ningjie Guo Hongmin Liu Adil Mardinoglu M.A.A.Mamun Ya Gao Xiaobing Chen 《Genes & Diseases》 2025年第3期168-179,共12页
Post-translational modifications(PTMs)of proteins play a crucial role in living organisms,altering the properties and functions of proteins.There are over 450 known PTMs involved in various life activities.LSD1(lysine... Post-translational modifications(PTMs)of proteins play a crucial role in living organisms,altering the properties and functions of proteins.There are over 450 known PTMs involved in various life activities.LSD1(lysine-specific demethylase 1)is the first identified histone demethylase that can remove monomethylation or dimethylation modifications from histone H3 lysine K4(H3K4)and histone H3 lysine K9(H3K9).This ability of LSD1 allows it to inhibit or activate transcription.LSD1 has been found to abnormally express at the protein level in various tumors, making it relevant to multiple diseases. As a PTM enzyme, LSD1 itself undergoes various PTMs, including phosphorylation, acetylation, ubiquitination, methylation, SUMOylation, and S-nitrosylation, influencing its activity and function. Dysregulation of thesePTMs has been implicated in a wide range of diseases, including cancer, metabolic disorders,neurological disorders, cardiovascular diseases, and bone diseases. Understanding the speciesof PTMs and functions regulated by various PTMs of LSD1 provides insights into its involvementin diverse physiological and pathological processes. In this review, we discuss the structuralcharacteristics of LSD1 and amino acid residues that affect its enzyme activity. We also summarize the potential PTMs that occur on LSD1 and their involvement in cellular processes.Furthermore, we describe human diseases associated with abnormal expression of LSD1. Thiscomprehensive analysis sheds light on the intricate interplay between PTMs and the functionsof LSD1, highlighting their significance in health and diseases. 展开更多
关键词 Enzyme activity Histone demethylase Human diseases LSD1 post-translational
原文传递
Improving regulatory T cell-based therapy:insights into post-translational modification regulation 被引量:1
12
作者 Aiting Wang Yanwen Wang +2 位作者 Rui Liang Bin Li Fan Pan 《Journal of Genetics and Genomics》 2025年第2期145-156,共12页
Regulatory T(Treg)cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases,such as autoimmune diseases,graft-versus-host disease(GVHD),tumors,and infectious diseases.Treg cells... Regulatory T(Treg)cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases,such as autoimmune diseases,graft-versus-host disease(GVHD),tumors,and infectious diseases.Treg cells exert suppressive function via distinct mechanisms,including inhibitory cytokines,granzyme or perforin-mediated cytolysis,metabolic disruption,and suppression of dendritic cells.Forkhead Box P3(FOXP3),the characteristic transcription factor,is essential for Treg cell function and plasticity.Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications(PTMs),including ubiquitination,acetylation,phosphorylation,methylation,glycosylation,poly(ADP-ribosyl)ation,and uncharacterized modifications.This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function.Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases,GVHD,tumors,and infectious diseases. 展开更多
关键词 Treg cell FOXP3 UBIQUITINATION ACETYLATION PHOSPHORYLATION METHYLATION GLYCOSYLATION post-translational modification
原文传递
The role of protein post-translational modifications and their crosstalk in determining pluripotent stem cells fate
13
作者 Wenhui Fan Taoxia E +4 位作者 Bin Lu Hongyan Sun Keshi Chen Xingguo Liu Linpeng Li 《Science Bulletin》 2025年第21期3453-3456,共4页
Pluripotent stem cells(PSCs)possess the ability to proliferate indefinitely,self-renew,and differentiate into three germ layers.These pluripotent characteristics allow PSCs to be used to treat many incurable diseases,... Pluripotent stem cells(PSCs)possess the ability to proliferate indefinitely,self-renew,and differentiate into three germ layers.These pluripotent characteristics allow PSCs to be used to treat many incurable diseases,such as spinal cord injury with the embryonic stem cells(ESCs)-derived oligodendrocyte progenitor cells,and dry age-related macular degeneration(AMD)with the ESCs-derived retinal pigment epithelium,and have great application value in clinical regenerative medicine. 展开更多
关键词 spinal cord injury oligodendrocyte progenitor cellsand self renew clinical regenerative medicine pluripotent stem cells fate pluripotent stem cells pscs possess protein post translational modifications pluripotent characteristics
原文传递
Lactate and lactylation modifications in neurological disorders
14
作者 Yu Gu Keyang Chen +5 位作者 Chunyan Lei Xinglong Yang Lu Wang Linhu Zhao Wen Jiang Qionghua Deng 《Neural Regeneration Research》 2026年第5期1681-1697,共17页
Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein ... Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications.Lactate,once considered merely a byproduct of anaerobic metabolism,has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system.Furthermore,recent studies have emphasized the significant role of lactate in numerous neurological diseases,including Alzheimer's disease,Parkinson's disease,acute cerebral ischemic stroke,multiple sclerosis,Huntington's disease,and myasthenia gravis.The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases,aiming to clarify their mechanisms of action and identify potential therapeutic targets.As such,this work provides an overview of the metabolic regulatory roles of lactate in various disorders,emphasizing its involvement in the regulation of brain function.Additionally,the specific mechanisms of brain lactate metabolism are discussed,suggesting the unique roles of lactate in modulating brain function.As a critical aspect of lactate function,lactylation modifications,including both histone and non-histone lactylation,are explored,with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications,such as lactylation writers and erasers.The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized,revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders.Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases. 展开更多
关键词 astrocyte-neuron lactate shuttle theory brain functions brain lactate metabolism central nervous system histone lysine lactylation monocarboxylate transporters nervous system neurodegenerative diseases non-histone lysine lactylation post-translational modifications
暂未订购
Physical Antibacterial Surface Modifications on Titanium-Based Implant Materials
15
作者 Zhang Zhe Liu Hui +2 位作者 Lin Manfeng Cai Zongyuan Zhao Dapeng 《稀有金属材料与工程》 北大核心 2025年第1期84-93,共10页
Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics... Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized. 展开更多
关键词 physical antibacterial behavior surface modification titanium alloy implant material
原文传递
Post-translational cleavage generates truncated IgY forms in the snake Elaphe taeniura
16
作者 Ming Zhang Long Hua +10 位作者 Tang-Yuan Xie Tao Wang Li-Juan Du Di Yu Han-Wei Cao Jin-Cheng Zhong Geng-Sheng Cao Xiang Ding Hai-Tang Han Yao-Feng Zhao Tian Huang 《Zoological Research》 2025年第2期277-284,共8页
While variable regions of immunoglobulins are extensively diversified by V(D)J recombination and somatic hypermutation in vertebrates,the constant regions of immunoglobulin heavy chains also utilize certain mechanisms... While variable regions of immunoglobulins are extensively diversified by V(D)J recombination and somatic hypermutation in vertebrates,the constant regions of immunoglobulin heavy chains also utilize certain mechanisms to produce diversity,including class switch recombination(CSR),subclass differentiation,and alternative expression of the same gene.Many species of birds,reptiles,and amphibians express a truncated isoform of immunoglobulin Y(IgY),termed IgY(ΔFc),which lacks theυCH3 andυCH4 domains.In Anseriformes,IgY(ΔFc)arises from alternative transcriptional termination sites within the sameυgene,whereas in some turtles,intact IgY and IgY(ΔFc)are encoded by distinct genes.Different from the previously reported IgY(ΔFc)variants,this study identified a truncated IgY in the snake Elaphe taeniura,characterized by the loss of only a portion of the CH4 domain.Western blotting and liquid chromatographytandem mass spectrometry confirmed that this truncated IgY is generated by post-translational cleavage at N338 within the IgY heavy chain constant(CH)region.Furthermore,both human and snake asparaginyl endopeptidase were shown to cleave snake IgY in vitro.These findings reveal a novel mechanism for the production of shortened IgY forms,demonstrating that the immunoglobulin CH region undergoes diversification through distinct strategies across vertebrates. 展开更多
关键词 Truncated IgY post-translational cleavage Asparaginyl endopeptidase
在线阅读 下载PDF
Structural modifications and applications of orange peel pectin polysaccharides:a review of recent research advances
17
作者 Bo-Han Jia Ling-Zhuo An +1 位作者 Xian-Ce Cao Hong-Yu Li 《Traditional Medicine Research》 2025年第8期44-56,共13页
Pectin is a natural polysaccharide with a complex structure consisting of linear and branched regions rich in galacturonic acid.The growing interest in orange peel pectin can be attributed to its abundant supply.Accor... Pectin is a natural polysaccharide with a complex structure consisting of linear and branched regions rich in galacturonic acid.The growing interest in orange peel pectin can be attributed to its abundant supply.According to statistics,about 10 million tons of orange peel waste are produced worldwide each year.Traditionally,the extraction and utilization of pectin have focused on its gelling,thickening,and stabilizing properties in food.However,as more and more research teams have found that pectin has good biocompatibility,biodegradability and easy chemical modification,its potential in drug delivery systems,tissue engineering,and wound healing is gradually being explored.This review focuses on orange peel pectin polysaccharides and discusses its traditional and modern extraction techniques,especially the advanced method of subcritical water extraction.This study also outlines the structural modifications of pectin such as methylation and acetylation,and introduces its antioxidant and anticancer biological activities and their emerging roles in the development of advanced biomaterials such as bone tissue engineering and fibre pad dressings. 展开更多
关键词 orange peel pectin EXTRACTION structural modification biomedical applications
在线阅读 下载PDF
Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry
18
作者 Keqiang Shi Xiujuan Hong +5 位作者 Dongyan Xu Tao Pan Huiwen Wang Hongru Feng Cheng Guo Yuanjiang Pan 《Chinese Chemical Letters》 2025年第3期217-221,共5页
RNA modifications play vital regulatory roles in biological systems.Dysregulated RNA modifications themselves or their regulators are associated with various diseases,including cancers and immune related diseases.Howe... RNA modifications play vital regulatory roles in biological systems.Dysregulated RNA modifications themselves or their regulators are associated with various diseases,including cancers and immune related diseases.However,to the best of our knowledge,RNA modifications in peripheral white blood cells(immune cells)have not been systematically investigated before.Here we utilized hydrophilic interaction liquid chromatography-tandem mass spectrometry(HILIC-MS/MS)for the quantification of 19 chemical modifications in total RNA and 17 chemical modifications in small RNA in peripheral white blood cells from breast cancer patients and healthy controls.We found out 13 RNA modifications were up-regulated in total RNA samples of breast cancer patients.For small RNA samples,only N6-methyladenosine(m^(6)A)was down-regulated in breast cancer patients(P<0.0001).Receiver operating characteristic(ROC)curves analysis showed that N4-acetylcytidine(ac^(4)C)in total RNA had an area under curve(AUC)value of 0.833,and m^(6)A in small RNA had an AUC value of 0.994.Our results further illustrated that RNA modifications may play vital roles in immune cell biology of breast cancer,and may act as novel biomarkers for the diagnosis of breast cancer. 展开更多
关键词 RNA modification Mass spectrometry Breast cancer Immune cell BIOMARKER
原文传递
New perspectives on DNA methylation modifications in ocular diseases
19
作者 Fei-Fei Zong Da-Dong Jia +6 位作者 Guang-Kun Huang Meng Pan Hao Hu Shi-Yi Song Liang Xiao Ru-Weng Wang Liang Liang 《International Journal of Ophthalmology(English edition)》 2025年第2期340-350,共11页
The methylation of DNA is a prevalent epigenetic modification that plays a crucial role in the pathological progression of ocular diseases.DNA methylation can regulate gene expression,thereby affecting cell function a... The methylation of DNA is a prevalent epigenetic modification that plays a crucial role in the pathological progression of ocular diseases.DNA methylation can regulate gene expression,thereby affecting cell function and signal transduction.Ophthalmic diseases are a kind of complex diseases,and their pathogenesis involves many factors such as genetic,environmental and individual differences.In addition,inflammation,oxidative stress and lipid metabolism,which abnormal DNA methylation is closely related to,are also considered to be major factors in eye diseases.The current understanding of DNA methylation in eye diseases is becoming more complex and comprehensive.In addition to the simple suppression of gene expression by hypermethylation,factors such as hypomethylation or demethylation,DNA methylation in non-promoter regions,interactions with other epigenetic modifications,and dynamic changes in DNA methylation must also be considered.Interestingly,although some genes are at abnormal methylation levels,their expression is not significantly changed,which indirectly reflects the complexity of gene regulation.This review aims to summarize and compare some relevant studies,and provide with new ideas and methods for the prevention and treatment of different eye diseases,such as glaucoma,retinoblastoma,and diabetic retinopathy. 展开更多
关键词 DNA methylation modification EPIGENETIC GLAUCOMA RETINOBLASTOMA diabetic retinopathy methylase inhibitors
原文传递
Synergistic enhancement of load-bearing and energy-absorbing performance in additively manufactured lattice structures through modifications to conventional unit cells
20
作者 Yi Ren Yu Nie +5 位作者 Bowen Xue Yucheng Zhao Lulu Liu Chao Lou Yongxun Li Wei Chen 《Defence Technology(防务技术)》 2025年第10期116-130,共15页
The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FB... The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FBCCZ unit cell through reversing,combining,and turning strategies.The designed lattices were fabricated via laser powder bed fusion(LPBF)using Ti-6Al-4V powder,and the mechanical properties,energy absorption capacity,and deformation behaviors were systematically investigated through quasi-static compression tests and finite element simulations.The results demonstrate that the three modified lattices exhibit superior performance over the conventional FBCCZ structure in terms of fracture strain,specific yield strength,specific ultimate strength,specific energy absorption,and energy absorption efficiency,thereby validating the efficacy of unit cell modifications in enhancing lattice performance.Notably,the CFBCCZ and TFBCCZ lattices significantly outperform both the FBCCZ and RFBCCZ lattice structures in load-bearing and energy absorption.While TFBCCZ shows marginally higher specific elastic modulus and energy absorption efficiency than CFBCCZ,the latter achieves superior energy absorption due to its highest ultimate strength and densification strain.Finite element simulations further reveal that the modified lattices,through optimized redistribution and adjustment of internal nodes and struts,effectively alleviate stress concentration during loading.This structural modification enhances the structural integrity and deformation stability under external loads,enabling a synergistic enhancement of load-bearing capacity and energy absorption performance. 展开更多
关键词 Load-bearing Energy absorption Additive manufacturing Lattice structure Unit cell modification
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部