期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Technology and understanding of post-fracturing coring in three-dimensional development zone of Fuling shale gas,Sichuan Basin,SW China
1
作者 SUN Huanquan LU Zhiyong +5 位作者 LIU Li FANG Jichao ZHENG Aiwei LI Jiqing ZHANG Yuqiang XIAO Jialin 《Petroleum Exploration and Development》 2025年第3期731-745,共15页
The core sampling experiments were conducted after hydraulic fracturing in the three-dimensional development zone of Fuling shale gas.Six coring wells of different well types were systematically designed.Based on the ... The core sampling experiments were conducted after hydraulic fracturing in the three-dimensional development zone of Fuling shale gas.Six coring wells of different well types were systematically designed.Based on the integrated engineering technology of post-fracturing drilling,coring and monitoring of shale and the analysis of fracture source tracing,the evaluation of the fracture network after fracturing in the three-dimensional development of shale gas was conducted.The data of core fractures after fracturing indicate that three major types of fractures are formed after fracturing:natural fractures,hydraulic fractures,and fractures induced by external mechanical force,which are further classified into six subcategories:natural structural fractures,natural bedding fractures,hydraulic fractures,hydraulically activated fractures,drilling induced fractures,and fractures induced by core transportation.The forms of the artificial fracture network after fracturing are complex.Hydraulic fractures and hydraulically activated fractures interweave with each other,presenting eight forms of artificial fracture networks,among which the“一”-shaped fracture is the most common,accounting for approximately 70%of the total fractures.When the distance to the fractured wellbore is less than 35 m,the density of the artificial fracture network is relatively high;when it is 35–100 m,the density is lower;and when it is beyond 100 m,the density gradually increases.The results of the fracture tracing in the core sampling area confirm that the current fracturing technology can essentially achieve the differential transformation of the reservoir in the main area of Jiaoshiba block in Fuling.The three-layer three-dimensional development model can efficiently utilize shale gas reserves,although there is still room for improvement in the complexity and propagation uniformity of fractures.It is necessary to further optimize technologies such as close-cutting combined with temporary blocking and deflection within fractures or at fracture mouths,as well as limited flow perforation techniques,to promote the balanced initiation and extension of fractures. 展开更多
关键词 Fuling shale gas field three-dimensional development post-fracturing core sampling coring technology fracture classification fracture source tracing fracture network assessment reserve utilization
在线阅读 下载PDF
Implications of the geochemical characteristics of post-fracturing flowback fluids for shale gas exploration and exploitation
2
作者 Zhipeng Ou Cheng Chang +7 位作者 Weiyang Xie Haoqian Zhang Haoran Hu Ruiqi Gao Mengting Gao Shengwang Lin Chunhai Ji Ziqiang Xia 《Energy Geoscience》 2025年第4期228-239,共12页
Previous studies on post-fracturing flowback fluids focus primarily on their cleaning and discharge,high salinity sources,and damage to gas reservoirs.An analysis of the geochemical characteristics of these fluids hel... Previous studies on post-fracturing flowback fluids focus primarily on their cleaning and discharge,high salinity sources,and damage to gas reservoirs.An analysis of the geochemical characteristics of these fluids helps develop an improved understanding of the preservation condition and fracturing performance of shale gas reservoirs.This study analyzed the ion,total dissolved solids(TDS)concentration,and stable isotope characteristics of post-fracturing flowback fluids from five horizontal shale gas wells in the Luzhou area.Among these wells,two were subjected to hydraulic fracturing using fresh water,and three using reused flowback fluids.The results indicate that with increasing flowback time,the post-fracturing flowback fluids from wells subjected to hydraulic fracturing using fresh water showed increased TDS concentration,heavier stable isotopes,and the presence of new ion components.These results indicate the mixing of a large volume of formation water into the fluids.In contrast,postfracturing flowback fluids from wells subjected to hydraulic fracturing using reused flowback fluids exhibited a slow increase in the TDS concentration and stable isotopes.As the flowback time increased,the trends in TDS concentration and stable isotope ratios of post-fracturing flowback fluids from shale gas wells subjected to fracturing using fresh water evolved toward those of post-fracturing flowback fluids from shale gas wells undergoing fracturing using reused flowback fluids.Measurements show that post-fracturing flowback fluids from both well types exhibited roughly the same properties after one year of shale gas production.This result suggests that post-fracturing flowback fluids from wells using reused flowback fluids progressively took on the formation water properties.In particular,postfracturing flowback fluids from well Lu 211—a well subjected to hydraulic fracturing using fresh water—showed a low sodium-chloride coefficient,a low coefficient of variation,high TDS concentration,heavy stable isotopes,and a high nitrate ion concentration.This indicates a formation water source of the fluids and the poor sealing of the formation water,which hinders shale gas enrichment.The quantification of the fracturing fluid and formation water contents in the post-fracturing flowback fluids reveals that higher TDS concentration and heavier stable isotopes in the fluids appear to correspond to higher formation water content and lower fracturing fluid content,as well as higher fracturing performance.A systematic analysis of the geochemical characteristics and flowback pattern of fracturing fluids indirectly provides insights into the flow path of formation water,water body mixing,rock-water interactions,and fluid sources.Besides,the analysis offers a new perspective for understanding the preservation conditions and fracturing performance of shale gas reservoirs. 展开更多
关键词 post-fracturing flowback fluids Total salinity Stable isotope Sealing Fracturing performance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部