The AD 79 eruption of Somma-Vesuvius completely buried the ancient landscape around Pompeii (Italy) to some extent conserving the pre-AD 79 Roman paleosols of the Sarno River plain. To estimate potential post-burial s...The AD 79 eruption of Somma-Vesuvius completely buried the ancient landscape around Pompeii (Italy) to some extent conserving the pre-AD 79 Roman paleosols of the Sarno River plain. To estimate potential post-burial soil developments of these paleosols detailed soil liquid and solid phase analysis were carried out. Firstly, an in-situ soil hydrological monitoring was conducted within a pre-AD 79 paleosol in natural undisturbed stratification. The results show that soil water flow and nutrient transport from the overlying volcanic deposits into the pre-AD 79 paleosol take place. Secondly, to estimate their influence on the paleosol’s mineral soil properties, the solid phase of four pre-AD 79 paleosols and associated modern unburied soils were analysed and compared. By combining the data from the soil liquid and solid phase analysis, potential post-burial changes in the paleosols were estimated. Finally, a rise of the mean groundwater table was determined since AD 79. This distinguishes the Sarno River plain into two different zones of post-burial soil developments: 1) lower altitudes where formerly terrestrial paleosols are now influenced by groundwater dynamics and 2) higher altitudes where the paleosols are still part of the vadose zone and rather influenced by infiltration water or interflow. Thus, the mechanism of potential post-burial soil development being active in the pre-AD 79 paleosols is not uniform for the entire Sarno River plain but strongly depends on the paleotopographic situation.展开更多
Recently, we delved into Precambrian shale-facies microfossils of China by observation from petrographic thin sections. After having examined a large number of thin sections cut parallel to lamination under the light ...Recently, we delved into Precambrian shale-facies microfossils of China by observation from petrographic thin sections. After having examined a large number of thin sections cut parallel to lamination under the light microscope, we discovered an interesting phenomenon, acritarchs with post-burial contraction cracks.展开更多
基金part of the interdisciplinary SALVE-research project undertaken by the German Archaeological Institute(DAI)in cooperation with the Heidelberg Academy of Sciences and Humanities(HAW)and the University of Tübingen(www.salve-research.org)Project directors are Florian Seiler(DAI)and Michael Märker(HAW)and it was funded by the Deutsche Forschungsgemeinschaft(German Research Foundation).
文摘The AD 79 eruption of Somma-Vesuvius completely buried the ancient landscape around Pompeii (Italy) to some extent conserving the pre-AD 79 Roman paleosols of the Sarno River plain. To estimate potential post-burial soil developments of these paleosols detailed soil liquid and solid phase analysis were carried out. Firstly, an in-situ soil hydrological monitoring was conducted within a pre-AD 79 paleosol in natural undisturbed stratification. The results show that soil water flow and nutrient transport from the overlying volcanic deposits into the pre-AD 79 paleosol take place. Secondly, to estimate their influence on the paleosol’s mineral soil properties, the solid phase of four pre-AD 79 paleosols and associated modern unburied soils were analysed and compared. By combining the data from the soil liquid and solid phase analysis, potential post-burial changes in the paleosols were estimated. Finally, a rise of the mean groundwater table was determined since AD 79. This distinguishes the Sarno River plain into two different zones of post-burial soil developments: 1) lower altitudes where formerly terrestrial paleosols are now influenced by groundwater dynamics and 2) higher altitudes where the paleosols are still part of the vadose zone and rather influenced by infiltration water or interflow. Thus, the mechanism of potential post-burial soil development being active in the pre-AD 79 paleosols is not uniform for the entire Sarno River plain but strongly depends on the paleotopographic situation.
文摘Recently, we delved into Precambrian shale-facies microfossils of China by observation from petrographic thin sections. After having examined a large number of thin sections cut parallel to lamination under the light microscope, we discovered an interesting phenomenon, acritarchs with post-burial contraction cracks.