The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tension...The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tensioning to attach the walls to the foundation, along with employing energy dissipating shear connectors between the walls. Using acceptance criteria defined in terms of inter-story drift, residual drift, and floor acceleration, this study presents a multiplelevel performance-based seismic evaluation of two five-story unbonded post-tensioned jointed precast wall systems. The design and analysis of these two wall systems, established as the direct displacement-based and force-based solutions for a prototype building used in the PREcast Seismic Structural Systems (PRESSS) program, were performed at 60% scale so that the analysis model could be validated using the PRESSS test data. Both buildings satisfied the performance criteria at four levels of earthquake motions although the design base shear of the direct displacement-based jointed wall system was 50% of that demanded by the force-based design method. The study also investigated the feasibility of controlling the maximum transient inter-story drift in a jointed wall system by increasing the number of energy dissipating shear connectors between the walls but without significantly affecting its re-centering capability.展开更多
Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide ...Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide a security service and protect the privacy of users by providing protection against attacks such as identity theft, denial of service, eavesdropping and unauthorised access to personal and sensitive data. It is therefore necessary to find a robust method of using the key that is effective in protecting and preventing data tampering. In this paper, we design and implement a security and data protection method using a key generated on the basis of electromagnetic wave propagation theories. Modelling and implementation of a data security and protection method using a key generated on the basis of electromagnetic wave propagation theories.展开更多
文摘The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tensioning to attach the walls to the foundation, along with employing energy dissipating shear connectors between the walls. Using acceptance criteria defined in terms of inter-story drift, residual drift, and floor acceleration, this study presents a multiplelevel performance-based seismic evaluation of two five-story unbonded post-tensioned jointed precast wall systems. The design and analysis of these two wall systems, established as the direct displacement-based and force-based solutions for a prototype building used in the PREcast Seismic Structural Systems (PRESSS) program, were performed at 60% scale so that the analysis model could be validated using the PRESSS test data. Both buildings satisfied the performance criteria at four levels of earthquake motions although the design base shear of the direct displacement-based jointed wall system was 50% of that demanded by the force-based design method. The study also investigated the feasibility of controlling the maximum transient inter-story drift in a jointed wall system by increasing the number of energy dissipating shear connectors between the walls but without significantly affecting its re-centering capability.
文摘Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide a security service and protect the privacy of users by providing protection against attacks such as identity theft, denial of service, eavesdropping and unauthorised access to personal and sensitive data. It is therefore necessary to find a robust method of using the key that is effective in protecting and preventing data tampering. In this paper, we design and implement a security and data protection method using a key generated on the basis of electromagnetic wave propagation theories. Modelling and implementation of a data security and protection method using a key generated on the basis of electromagnetic wave propagation theories.