Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized...Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized Fourier coefficients,respectively.In this paper,we investigate the correlations of triple sums associated to these Fourier coefficientsλ_(f)(n),λ_(g)(n),λ_(h)(n)over certain polynomials,and obtain some power-saving asymptotic estimates which beat the trivial bounds.展开更多
In this paper,we investigate the weighted Dirichlet eigenvalue problem of polynomial operator of the drifting Laplacian on the cigar soliton■as follows■where is a positive continuous function on,denotes the outward ...In this paper,we investigate the weighted Dirichlet eigenvalue problem of polynomial operator of the drifting Laplacian on the cigar soliton■as follows■where is a positive continuous function on,denotes the outward unit normal to the boundary,and are two nonnegative constants.We establish some universal inequalities for eigenvalues of this problem.展开更多
In this paper,we study the eigenvalue problem of the Markov diffusion operator L^(2),and give generalized inequalities for eigenvalues of the operator L^(2)on a Markov diffusion triple.By applying these inequalities,w...In this paper,we study the eigenvalue problem of the Markov diffusion operator L^(2),and give generalized inequalities for eigenvalues of the operator L^(2)on a Markov diffusion triple.By applying these inequalities,we then get some new universal bounds for eigenvalues of a special Markov diffusion operator L^(2)on bounded domains in an Euclidean space.Moreover,our results can reveal the relationship between the(k+1)-th eigenvalue and the first k eigenvalues in a relatively straightforward manner.展开更多
In this article, we consider the eigenvalue problem for the bi-Kohn Laplacian and obtain universal bounds on the (k + 1)-th eigenvalue in terms of the first k eigenvalues independent of the domains.
In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
Let A= (aij)∈Cn×n and ri = ∑ j≠i|aij|. Suppose thatforeach row of A there isatleastonenonzero off-diagonalentry. Itis proved thatalleigenvalues ofAarecontained in Ω~= ∪aij≠0,i≠j{z∈C:|z- aii||z- ...Let A= (aij)∈Cn×n and ri = ∑ j≠i|aij|. Suppose thatforeach row of A there isatleastonenonzero off-diagonalentry. Itis proved thatalleigenvalues ofAarecontained in Ω~= ∪aij≠0,i≠j{z∈C:|z- aii||z- ajj|≤rirj}. The resultre- duces the num berofovals in originalBrauer'stheorem in m any cases. Eigenval- ues(and associated eigenvectors) thatlocate in theboundary ofΩ~ arediscussed.展开更多
Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give som...Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give some expressions for upper bound of the (k + 1)-th eigenvalue )λk+l in terms of the first k eigenvalues.展开更多
This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy in...This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc...展开更多
In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper boun...In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper bounds of the (k+1)-th eigenvalueΛ_k+1 in terms of the first k eigenvalues.Moreover,these results contain some results for the biharmonic operator.展开更多
In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues in...In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues independent of the domains.展开更多
In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated ...In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.展开更多
A procedure is presented for computing the derivatives of repeated eigenvalues and the corresponding eigenvectors of damped systems. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the s...A procedure is presented for computing the derivatives of repeated eigenvalues and the corresponding eigenvectors of damped systems. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the second-order system, and the use of rather undesirable state space representation is avoided. Hence the cost of computation is greatly reduced. The efficiency of the proposed procedure is illustrated by considering a 5-DOF non-proportionally damped system.展开更多
A new method for estimating the bounds of eigenvalues ispresented. In order to show that the method proposed is as effectiveas Qiu's an undamping spring-mass system with 5 nodes and 5 degrees ofreedom is given. To...A new method for estimating the bounds of eigenvalues ispresented. In order to show that the method proposed is as effectiveas Qiu's an undamping spring-mass system with 5 nodes and 5 degrees ofreedom is given. To illustrate that the present method can beapplied to structures which cannot be treated by non-negativedecomposition, a plane frame with 202 nodes and 357 beam elements isgiven. The results show that the present method is effective forestimating the bounds of eigenvalues and is more common than Qiu's.展开更多
Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmande...Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω.展开更多
For a non-zero real number α, let sα(G) denote the sum of the αth power of thenon-zero Laplacian eigenvalues of a graph G. In this paper, we establish a connection betweensα(G) and the first Zagreb index in wh...For a non-zero real number α, let sα(G) denote the sum of the αth power of thenon-zero Laplacian eigenvalues of a graph G. In this paper, we establish a connection betweensα(G) and the first Zagreb index in which the H¨older’s inequality plays a key role. By usingthis result, we present a lot of bounds of sα(G) for a connected (molecular) graph G in terms ofits number of vertices (atoms) and edges (bonds). We also present other two bounds for sα(G)in terms of connectivity and chromatic number respectively, which generalize those results ofZhou and Trinajsti′c for the Kirchho? index [B Zhou, N Trinajsti′c. A note on Kirchho? index,Chem. Phys. Lett., 2008, 455: 120-123].展开更多
This paper presents a method for estimating the upper and lowerbounds of eigenvalues of structures with uncertainties. The uncertainparameters re described by the convex model. A numerical ex- ample ofthe frame struct...This paper presents a method for estimating the upper and lowerbounds of eigenvalues of structures with uncertainties. The uncertainparameters re described by the convex model. A numerical ex- ample ofthe frame structure is given to illustrate the efficiency of themethod.展开更多
The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of 3D Fredholm-Stieltjes integral equations, i.e. 3D Fredholm equations with respect to suitable Stieltjes-type measures...The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of 3D Fredholm-Stieltjes integral equations, i.e. 3D Fredholm equations with respect to suitable Stieltjes-type measures. Some applications are shown, relevant to the problem of computing the eigenvalues of a body charged by a finite number of masses concentrated on points, curves or surfaces lying in.展开更多
Let G be a simple graph. We first show that δ≥di-√[i/2][i/2], where δiand di denote the i-th signless Laplacian eigenvalue and the i-th degree of vertex in G, respectively.Suppose G is a simple and connected graph...Let G be a simple graph. We first show that δ≥di-√[i/2][i/2], where δiand di denote the i-th signless Laplacian eigenvalue and the i-th degree of vertex in G, respectively.Suppose G is a simple and connected graph, then some inequalities on the distance signless Laplacian eigenvalues are obtained by deleting some vertices and some edges from G. In addition, for the distance signless Laplacian spectral radius ρQ(G), we determine the extremal graphs with the minimum ρQ(G) among the trees with given diameter, the unicyclic and bicyclic graphs with given girth, respectively.展开更多
Edge detection of potential field interpretation is an important task. The traditional edge detection methods have poor ability in outlining weak amplitude anomalies clearly. The resolved edges position is blurred.We ...Edge detection of potential field interpretation is an important task. The traditional edge detection methods have poor ability in outlining weak amplitude anomalies clearly. The resolved edges position is blurred.We purposed new edge detection methods based on directional eigenvalues of potential field gradient tensor for the causative sources. In order to balance strong and weak amplitude anomalies simultaneously,we present one normalization method using different orders of vertical derivatives to improve the new filters. The presented filters were tested on synthetic and real potential field data to verify its feasibility. All of the results have shown that the new edge detection methods can not only display the sources edges precisely and clearly,but also bring out more geological subtle details.展开更多
基金Supported in part by NSFC(Nos.12401011,12201214)National Key Research and Development Program of China(No.2021YFA1000700)+3 种基金Shaanxi Fundamental Science Research Project for Mathematics and Physics(No.23JSQ053)Science and Technology Program for Youth New Star of Shaanxi Province(No.2025ZC-KJXX-29)Natural Science Basic Research Program of Shaanxi Province(No.2025JC-YBQN-091)Scientific Research Foundation for Young Talents of WNU(No.2024XJ-QNRC-01)。
文摘Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized Fourier coefficients,respectively.In this paper,we investigate the correlations of triple sums associated to these Fourier coefficientsλ_(f)(n),λ_(g)(n),λ_(h)(n)over certain polynomials,and obtain some power-saving asymptotic estimates which beat the trivial bounds.
基金Supported by National Natural Science Foundation of China(11001130,12272062)Fundamental Research Funds for the Central Universities(30917011335).
文摘In this paper,we investigate the weighted Dirichlet eigenvalue problem of polynomial operator of the drifting Laplacian on the cigar soliton■as follows■where is a positive continuous function on,denotes the outward unit normal to the boundary,and are two nonnegative constants.We establish some universal inequalities for eigenvalues of this problem.
基金Supported by the Open Research Fund of Key Laboratory of Nonlinear Analysis and Applications(Central China Normal University),Ministry of Education,P.R.China(Grant No.NAA2025ORG011)Science and Technology Plan Project of Jingmen(Grant No.2024YFZD076)+3 种基金Research Team Project of Jingchu University of Technology(Grant No.TD202006)Research Project of Jingchu University of Technology(Grant Nos.HX20240049HX20240200)the Teaching Reform Research Project of Hubei Province(Grant No.2024496)。
文摘In this paper,we study the eigenvalue problem of the Markov diffusion operator L^(2),and give generalized inequalities for eigenvalues of the operator L^(2)on a Markov diffusion triple.By applying these inequalities,we then get some new universal bounds for eigenvalues of a special Markov diffusion operator L^(2)on bounded domains in an Euclidean space.Moreover,our results can reveal the relationship between the(k+1)-th eigenvalue and the first k eigenvalues in a relatively straightforward manner.
文摘In this article, we consider the eigenvalue problem for the bi-Kohn Laplacian and obtain universal bounds on the (k + 1)-th eigenvalue in terms of the first k eigenvalues independent of the domains.
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
文摘Let A= (aij)∈Cn×n and ri = ∑ j≠i|aij|. Suppose thatforeach row of A there isatleastonenonzero off-diagonalentry. Itis proved thatalleigenvalues ofAarecontained in Ω~= ∪aij≠0,i≠j{z∈C:|z- aii||z- ajj|≤rirj}. The resultre- duces the num berofovals in originalBrauer'stheorem in m any cases. Eigenval- ues(and associated eigenvectors) thatlocate in theboundary ofΩ~ arediscussed.
基金supported by NSFC (10471108,10631020) of ChinaNSF of Henan Provincial Education Department (2010A110008)
文摘Let Ω be a connected bounded domain in R^n. Denote by λi the i-th eigenvalue of the Lapla^ian operator with any order p:{u=Эn→^-Эu=…=Эn→p-1^-Эp-1u=0 on ЭΩ (-△)pu=λu in Ω.In this article, we give some expressions for upper bound of the (k + 1)-th eigenvalue )λk+l in terms of the first k eigenvalues.
文摘This paper considers one computational method of the eigenvalues approximate value of the horizontal vibration problem of beam. The proof of our main result is based on the variational formula. First of all, Cauchy inequality is used to obtain a basic inequality. Secondly, the functions of basis are made by Galerkin method, and the error estimates of eignevalues are obtained by Cauchy inequality. At last, the computational method of the approximate value of the eigenvalues turns out immediately, and acc...
基金supported by the National Natural Science Foundation of China(11001130)the NUST Research Funding(2010ZYTS064)supported by China Postdoctoral Science Foundation(20080430351)
文摘In this paper,we investigate the Dirichlet eigenvalue problem of fourth-order weighted polynomial operator △2u-a△u+bu=Λρu,inΩRn,u|Ω=uvΩ=0,where the constants a,b≥0.We obtain some estimates for the upper bounds of the (k+1)-th eigenvalueΛ_k+1 in terms of the first k eigenvalues.Moreover,these results contain some results for the biharmonic operator.
基金supported by NSFC (11001076)Project of Henan Provincial department of Sciences and Technology (092300410143)+1 种基金NSF of Henan Provincial Education Department (2009A110010 2010A110008)
文摘In this paper, we consider eigenvalues of the Dirichlet biharmonic operator on a bounded domain in a hyperbolic space. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first kth eigenvalues independent of the domains.
文摘In this work, we present a computational method for solving eigenvalue problems of fourth-order ordinary differential equations which based on the use of Chebychev method. The efficiency of the method is demonstrated by three numerical examples. Comparison results with others will be presented.
基金Supported by the National Natural Science Foundation of China(2 0 0 0 CG0 1 0 3) the Fund of"The Developing Program for Outstanding Person"in NPUS & T Innovation Foundation for Young Teachers of Northwestern Polytechnical University.
文摘In this paper, the spectrum and characteristic polynomial for a special kind of symmetric block circulant matrices are given.
基金Project supported by the Mathematical Tianyuan Foundation of China (No. 10626019)
文摘A procedure is presented for computing the derivatives of repeated eigenvalues and the corresponding eigenvectors of damped systems. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the second-order system, and the use of rather undesirable state space representation is avoided. Hence the cost of computation is greatly reduced. The efficiency of the proposed procedure is illustrated by considering a 5-DOF non-proportionally damped system.
基金the National Natural Science Foundation (No.19872028)the Mechanical Technology Development Foundation of China
文摘A new method for estimating the bounds of eigenvalues ispresented. In order to show that the method proposed is as effectiveas Qiu's an undamping spring-mass system with 5 nodes and 5 degrees ofreedom is given. To illustrate that the present method can beapplied to structures which cannot be treated by non-negativedecomposition, a plane frame with 202 nodes and 357 beam elements isgiven. The results show that the present method is effective forestimating the bounds of eigenvalues and is more common than Qiu's.
基金partially supported by the NSFC(11631011,11626251)
文摘Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω.
基金Supported by the National Natural Science Foundation of China(10831001)
文摘For a non-zero real number α, let sα(G) denote the sum of the αth power of thenon-zero Laplacian eigenvalues of a graph G. In this paper, we establish a connection betweensα(G) and the first Zagreb index in which the H¨older’s inequality plays a key role. By usingthis result, we present a lot of bounds of sα(G) for a connected (molecular) graph G in terms ofits number of vertices (atoms) and edges (bonds). We also present other two bounds for sα(G)in terms of connectivity and chromatic number respectively, which generalize those results ofZhou and Trinajsti′c for the Kirchho? index [B Zhou, N Trinajsti′c. A note on Kirchho? index,Chem. Phys. Lett., 2008, 455: 120-123].
基金the National Natural Science Foundation of China(No.19872028)
文摘This paper presents a method for estimating the upper and lowerbounds of eigenvalues of structures with uncertainties. The uncertainparameters re described by the convex model. A numerical ex- ample ofthe frame structure is given to illustrate the efficiency of themethod.
文摘The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of 3D Fredholm-Stieltjes integral equations, i.e. 3D Fredholm equations with respect to suitable Stieltjes-type measures. Some applications are shown, relevant to the problem of computing the eigenvalues of a body charged by a finite number of masses concentrated on points, curves or surfaces lying in.
基金Supported by the National Natural Science Foundation of China(Grant No.11171343)
文摘Let G be a simple graph. We first show that δ≥di-√[i/2][i/2], where δiand di denote the i-th signless Laplacian eigenvalue and the i-th degree of vertex in G, respectively.Suppose G is a simple and connected graph, then some inequalities on the distance signless Laplacian eigenvalues are obtained by deleting some vertices and some edges from G. In addition, for the distance signless Laplacian spectral radius ρQ(G), we determine the extremal graphs with the minimum ρQ(G) among the trees with given diameter, the unicyclic and bicyclic graphs with given girth, respectively.
基金financially supported by Sino Probe-09-01 Grant No. 201311192Project 2014100 Supported by Graduate Innovation Fund of Jilin University
文摘Edge detection of potential field interpretation is an important task. The traditional edge detection methods have poor ability in outlining weak amplitude anomalies clearly. The resolved edges position is blurred.We purposed new edge detection methods based on directional eigenvalues of potential field gradient tensor for the causative sources. In order to balance strong and weak amplitude anomalies simultaneously,we present one normalization method using different orders of vertical derivatives to improve the new filters. The presented filters were tested on synthetic and real potential field data to verify its feasibility. All of the results have shown that the new edge detection methods can not only display the sources edges precisely and clearly,but also bring out more geological subtle details.