Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of...Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.展开更多
A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis o...A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis of fuzzy logic and rules. The simulation and experimental results show that this control system can obtain better dynamic and static characteristics.展开更多
Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controll...Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.展开更多
A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventiona...A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge, And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system.展开更多
Traditional CAD technique does not support the design processes such as function definition, conceptual design and preliminary design, which are most creative and play significant roles on the design quality. Because ...Traditional CAD technique does not support the design processes such as function definition, conceptual design and preliminary design, which are most creative and play significant roles on the design quality. Because scheme design has close relationship with product structure, performance and technology cost, it is important for applying the intelligent CAD of scheme design to improve the quality and competitive level of the product. The definition and function of welding positioner are discussed in this paper. The new definition of welding positioner extends the research scope of welding positioner to welding fixture and welding positioning motion mechanism. The design process of welding fixture and positioning motion system is described, and the cased based and knowledge based design strategy of welding positioner scheme design intelligent CAD is then put forward, which lays foundation for developing proto type system of welding positioner scheme design.展开更多
This paper presents an adaptive saturated integral sliding mode controller(ASISMC)integrated with an adaptive extended state observer(AESO)to address the challenges of nonlinear time-varying characteristics,parameter ...This paper presents an adaptive saturated integral sliding mode controller(ASISMC)integrated with an adaptive extended state observer(AESO)to address the challenges of nonlinear time-varying characteristics,parameter uncertainties,and external disturbances in valve positioner systems(VPS).To begin with,the VPS dynamic model is established by combining the valve positioner model,the control valve model,and the Euler-Lagrange model,where the uncertain parameters are estimated using the adaptive laws.Moreover,a tracking differentiator(TD)is implemented to ensure smooth and continuous signal processing.The AESO with structural self-regulation capability is also developed to estimate system perturbations and uncertainties effectively.Meanwhile,the proposed ASISMC is designed using adaptive laws based on the backstepping technique,further enhanced by setting saturation constraints on the integral sliding film surface.Finally,experimental validation confirms the superiority of the proposed approach over existing methods in improving control precision,response velocity,and disturbance rejection capability.展开更多
BACKGROUND:Tracheal intubation(TI)is a fundamental procedure for securing the airway or assisting ventilation in emergency medicine.Tracheal intubation in the lateral position(TILP)has been utilized in clinical practi...BACKGROUND:Tracheal intubation(TI)is a fundamental procedure for securing the airway or assisting ventilation in emergency medicine.Tracheal intubation in the lateral position(TILP)has been utilized in clinical practice,demonstrating potential advantages in specific scenarios,including emergency settings.However,there is a lack of comprehensive reviews and practical protocols on TILP application.To address this gap,we performed a narrative review,and provided evidence-based recommendations to formulate a practice protocol,to assist clinicians to effectively apply TILP.METHODS:We conducted a narrative review of TILP applications and developed recommendations based on clinical research evidence and clinical experience.Delphi method was used among the TILP consortium to grade the strength of the recommendations and to help reach consensus.The practice protocols were formulated as warranted by advancements in medical knowledge,technology,and practice.RESULTS:This narrative review summarized the current evidence on TILP application,highlighting its safety,efficacy,challenges,and potential complications.In total,24 recommendations and a clinical protocol for TILP application in emergency patients were established.CONCLUSION:TILP is a valuable technique in emergency medicine.We reviewed its application in emergency settings and formulated recommendations along with a clinical practice protocol.Future studies are needed to evaluate the safety and efficacy of TILP,broaden its scope of application,and explore effective training protocols.展开更多
Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution...Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution of hillslope soil moisture replenishment after precipitation determines vegetation survival and growth.Therefore,in this study experiments were performed on a hillslope in the Liupan Mountains,Ningxia Hui Autonomous Region,China,to quantify the unevenness of soil moisture replenishment.Soil water content(SWC)in the 0–60 cm layer and precipitation were monitored throughout the growing season in 2020 and 2021.The results showed that(1)Annual soil moisture replenishment was the highest at the mid-slope position,with an average of 309.9 mm,especially under moderate and heavy rain grade conditions,reaching 38.7% and 30.8% of the total replenishment,respectively;(2)Vertical replenishment played a dominant role in the total replenishment,accounting for 82.8%;lateral replenishment played an important but lesser role,accounting for up to 17.2% of the total replenishment;(3)Based on a soil moisture replenishment model established in this study,the maximal replenishment occurred at 90 m from the top of the slope;(4)The dominant factors contributing to the soil moisture replenishment were rainfall amount and saturated hydraulic conductivity(Ks).These findings suggest that attention should be given to both vertical and lateral soil moisture replenishment,and the mid-slope position could be preferred for site selection to achieve precise and integrated forest-water management on hillslopes in semi-arid mountainous regions.展开更多
A general metal-free photochemcial oxidation of benzylic C—H bonds has been successfully accomplished via a hydrogen atom transfer(HAT)process.A range of high value-added aromatic ketones were facilely synthesized wi...A general metal-free photochemcial oxidation of benzylic C—H bonds has been successfully accomplished via a hydrogen atom transfer(HAT)process.A range of high value-added aromatic ketones were facilely synthesized with high chemoselectivity under mild conditions.Moreover,the mild conditions by using air as the oxidant render the developed proto-col more ecofriendly and environmentally sustainable.展开更多
The syndrome a posteriori probability of the log-likelihood ratio of intercepted codewords is used to develop an algorithm that recognizes the polar code length and generator matrix of the underlying polar code.Based ...The syndrome a posteriori probability of the log-likelihood ratio of intercepted codewords is used to develop an algorithm that recognizes the polar code length and generator matrix of the underlying polar code.Based on the encoding structure,three theorems are proved,two related to the relationship between the length and rate of the polar code,and one related to the relationship between frozen-bit positions,information-bit positions,and codewords.With these three theorems,polar codes can be quickly reconstruced.In addition,to detect the dual vectors of codewords,the statistical characteristics of the log-likelihood ratio are analyzed,and then the information-and frozen-bit positions are distinguished based on the minimumerror decision criterion.The bit rate is obtained.The correctness of the theorems and effectiveness of the proposed algorithm are validated through simulations.The proposed algorithm exhibits robustness to noise and a reasonable computational complexity.展开更多
Sunflower leaf photosynthesis strongly depends on the leaf position in the plant stem conditioning,which directly affects other physiological processes.Therefore,a study of the leaf’s physiological status regarding t...Sunflower leaf photosynthesis strongly depends on the leaf position in the plant stem conditioning,which directly affects other physiological processes.Therefore,a study of the leaf’s physiological status regarding the leaf position in the stem was performed on sunflowers in the flowering stage.Eight differently positioned leaves were investigated,starting with the youngest leaf on the top of the stem to the leaves of the stem bottom,assigned as the oldest senescent leaves.According to chlorophyll fluorescence(ChlF)parameters connected to photosystem II(PSII)processes,significant changes in PSII functioning occurred only in the senescent leaves,while photosystem I(PSI)describing parameters showed a linear decrease with leaf age,i.e.,position on the stem.The antioxidative status of the leaves was dynamic,as stress indicators(lipid peroxidation and hydrogen peroxide content)fluctuated regarding leaf position on the stem,but no link was found between the activities of antioxidative enzymes and oxidative stress indicators.Linear decrease trend of secondary metabolites(mainly phenolic compounds)correlated with antioxidant activity,except for some phenolic acids(caffeic and ferulic acid),which increased in senescent leaves.The most changes in the physiological status of the leaves were confirmed in senescent leaves,which stand out the importance of younger leaves in maintaining the plant’s vitality after flowering,which is the most important for sunflower yield.展开更多
Habitat fragmentation poses a significant threat to bird communities, especially those in open and semi-open ecosystems such as steppes. This study investigates how steppe birds adapt to and utilize fragmented habitat...Habitat fragmentation poses a significant threat to bird communities, especially those in open and semi-open ecosystems such as steppes. This study investigates how steppe birds adapt to and utilize fragmented habitats by combining niche modeling with ecological trait analysis. We conducted standardized point surveys to examine the habitat preferences of 32 bird species in Inner Mongolia, China, and quantified their habitat niche parameters using the Outlying Mean Index (OMI). Our results reveal distinct habitat preferences among species, with some thriving in intact environments while others are better adapted to fragmented areas. Grassland species showed high specialization along the fragmentation gradient, while others exhibited adaptability to varying levels of fragmentation. Using a Generalized Additive Model (GAM), we identified three key traits influencing habitat occupancy: hand-wing index, body mass, and range size. Specifically, species with medium hand-wing indices, moderate body mass, and larger range sizes were more likely to occupy heavily fragmented habitats. These findings provide empirical evidence on how habitat fragmentation affects bird species in steppe ecosystems. The study highlights the importance of functional traits in understanding avian responses to habitat fragmentation and offers a foundation for developing effective conservation strategies to preserve biodiversity in fragmented landscapes.展开更多
Forest ecosystems can be characterized by a set of catenas arranged along the slope in mountainous areas as these affect microhabitat features,which in turn influence soil properties.Heretofore,few studies have examin...Forest ecosystems can be characterized by a set of catenas arranged along the slope in mountainous areas as these affect microhabitat features,which in turn influence soil properties.Heretofore,few studies have examined how topographic variables affect soil properties and quality in semiarid regions.This study aimed to provide important insights into how catena position and shape influence soil properties,soil quality,and their interrelationships in a semiarid protected oak forest in western Iran.Basic soil properties were measured in the laboratory.In addition,the soil quality index(SQI)was calculated at different topographic positions along both convex(Λ-shaped)and concave(V-shaped)catenas at two soil depths(0-15 and 15-30 cm).The findings indicated that soil organic carbon and total nitrogen declined in the lower depth in both V-andΛ-shaped catenas and at all catena positions.The lowest porosity was observed in the lower depth at toeslope positions(TS)of both catenas.Substrate-induced respiration(SIR),microbial biomass carbon(MBC),and basal respiration(BR)were higher in the upper depths at TS positions on V-shaped catenas than onΛ-shaped catenas.These biological indices were consistently higher in the upper depths than in the lower depths across all positions of both catenas.SQI had the highest values at TS positions on both catenas and in the upper depths across all positions.Pearson correlations between soil properties indicated that SQI was most strongly and positively correlated with biological properties in both catenas.The nutrient levels,microbial activity,and soil porosity in both catena shapes and at both soil depths displayed a relatively downward trend with increasing elevation from toeslope to summit positions.The results showed that catena topographic sequence shape and position affected most of the soil properties,providing evidence of the important role of topography in creating pedodiversity in oak forest ecosystems.展开更多
The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data ...The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data at three ignition positions.The venting mechanism was revealed by the simulated concentration distribution,temperature profile,and airflow velocity.The results show rear ignition results in the external methane mass distribution taking the form of"mushroom"and columnar flames in the external space,which can be expressed as a third-order polynomial relationship with distance;central ignition forms a relationship of the form y=AxB.Front ignition causes the temperature to show a tendency to repeated oscillations(rising,falling,and rising).Central ignition generates the maximum vented airflow velocity(V_(max)=320 m/s)upon vent opening.The results indicate that it is acceptable to apply numerical simulation of methane explosions in practice.展开更多
Objectives A systematic review and network meta-analysis was conducted to evaluate the effectiveness of different childbirth positions in reducing the duration of the second stage of labor,providing evidence-based ins...Objectives A systematic review and network meta-analysis was conducted to evaluate the effectiveness of different childbirth positions in reducing the duration of the second stage of labor,providing evidence-based insights for obstetric institutions to guide interventions related to childbirth positions.Methods A comprehensive literature search was conducted in databases,including PubMed,Web of Science,the Cochrane Library,Embase,Wanfang Databases,China National Knowledge Infrastructure Databases(CNKI),China Science and Technology Journal Database(CSTJ),and China Biology Medicine disc(CBMdisc)to identify studies on the effectiveness of different childbirth positions in reducing the duration of the second stage of labor.The search included randomized controlled trials published from database inception to September 30,2024.The Cochrane risk-of-bias tool was used to assess the quality of the studies.Two independent reviewers screened the literature,extracted data,and evaluated study quality.Subsequently,a network meta-analysis was performed using STATA software.The study protocol has been registered in PROSPERO(CRD42023428217).Results This study analyzed data from 25 randomized controlled trials involving 9,844 women.The findings indicated that in comparison to lithotomy position,free position(MD=20.53,95%CI[11.38,29.68])and upright position(MD=−24.13,95%CI[−42.94,-5.32])were found to be superior in reducing the duration of the second stage of labor.Free position outperformed kneeling position(MD=21.48,95%CI[4.67,38.28])and squatting position(MD=23.43,95%CI[1.88,44.97]);upright position was superior to kneeling position(MD=−25.08,95%CI[−46.93,−3.22]);semirecumbent position surpassed squatting position(MD=19.71,95%CI[2.05,37.38]);and upright position was also superior to squatting position(MD=−27.03,95%CI[−51.48,−2.57]).According to the surface under the cumulative ranking curve(SUCRA),the upright position emerged as the most effective for reducing the duration of the second stage of labor(87.4%),followed by free position(81.1%),semirecumbent position(70.0%),and lateral position(62.3%).Conclusion These findings offer valuable insights for midwifery practice and help inform future research directions.Considering the limitations of this review,more larger-scale,multicenter randomized controlled trials are warranted to further evaluate the relative effectiveness of different childbirth positions in reducing the duration of the second stage of labor.展开更多
In this paper,we present a novel particle filter(PF)-based direct position tracking method utilizing multiple distributed observation stations.Traditional passive tracking methods are anchored on repetitive position e...In this paper,we present a novel particle filter(PF)-based direct position tracking method utilizing multiple distributed observation stations.Traditional passive tracking methods are anchored on repetitive position estimation,where the set of consecutive estimates provides the tracking trajectory,such as Two-step and direct position determination methods.However,duplicate estimates can be computationally expensive.In addition,these techniques suffer from data association problems.The PF algorithm is a tracking method that avoids these drawbacks,but the conventional PF algorithm is unable to construct a likelihood function from the received signals of multiple observatories to determine the weights of particles.Therefore,we developed an improved PF algorithm with the likelihood function modified by the projection approximation subspace tracking with deflation(PASTd)algorithm.The proposed algorithm uses the projection subspace and spectral function to replace the likelihood function of PF.Then,the weights of particles are calculated jointly by multiple likelihood functions.Finally,the tracking problem of multiple targets is solved by multiple sets of particles.Simulations demonstrate the effectiveness of the proposed method in terms of computational complexity and tracking accuracy.展开更多
The purpose of this study was to evaluate the clinical application of a rotating pod and assess its dosimetric considerations,positional accuracy,and anatomical structure stability.A pre-dosimetric study conducted on ...The purpose of this study was to evaluate the clinical application of a rotating pod and assess its dosimetric considerations,positional accuracy,and anatomical structure stability.A pre-dosimetric study conducted on 11 patients revealed the potential for lung dose reduction using the rotational pod.Subsequently,seven patients underwent treatment with the rotational pod,and the target coverage and organs at risk doses were compared with those of conventional methods.The positional accuracy of the rotational pod,in collaboration with the imaging guidance system,was analyzed.The Dice similarity coefficient(DSC)was used to assess the settlement of tumors,trachea,and thoracic vertebrae after rotation for 20 min.In the pre-dosimetric study,there was no statistically significant difference in the volume of the internal gross tumor volume receiving≥99%of the prescription dose between the pod and conventional couch plans.However,compared to conventional couch plans,pod plans demonstrated a significant reduction in the average lung dose by 5-53%(p<0.01).Patient accrual,comprising seven cases,revealed reduced lung doses(9-26%)in four patients.For the other three patients,although there was no significant reduction in the lung dose,the use of the 90°beamline contributed to a decrease in the patient admission waiting time.The positional errors between the beams for lateral,longitudinal,vertical,ISO,pitch,and roll directions were 0.0 mm±5.3 mm,-1.2 mm±2.3 mm,-1.1 mm±2.7 mm,0.0°±0.6°,-0.1°±0.5°,and 0.0°±0.8°,respectively.The DSC for the target region and thoracic vertebrae between CT images captured before and after a 20-min rotation was higher than 0.85,whereas the DSC for the trachea was approximately 0.8.The preliminary clinical application of the rotational pod for lung tumors in fixed ion beamlines shows promise for achieving target coverage,reducing lung dose,and maintaining position accuracy.展开更多
The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to a...The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to address three typical problems of ttitude control in the full-scale aircraft static tests:(1)The coupling of rigid-body displacement and elastic deformation after large deformation,(2)the difficulty of characterizing the aircraft attitude by measurable structure,and(3)the insufficient adaptability of the center of gravity reference to complex loading conditions.The methodology involves the establishment of two observation coordinate systems,a ground coordinate system and an airframe coordinate system,and two deformation states,before and after airframe deformation.A subsequent analysis of the parameter changes of these two states under different coordinate systems is then undertaken,with the objective being to identify the key parameters affecting the attitude control accuracy of large deformation aircraft.Three optimization objective functions are established according to the test loading characteristics and the purpose of the test:(1)To minimize the full-scale aircraft loading angle error,(2)to minimize the full-scale aircraft loading additional load,and(3)to minimize the full-scale aircraft loading wing root additional bending moment.The optimization calculation results are obtained by using the particle swarm optimization algorithm,and the typical full-scale aircraft static test load condition of large passenger aircraft is taken as an example.The analysis of the results demonstrates that by customizing the measurable structure of the aircraft as the observation point for the aircraft attitude,and by obtaining the translational and rotational control parameters of the observation point during the test based on the optimization objective function,the results are reasonable,and the project can be implemented and used to control the aircraft's attitude more accurately in complex force test conditions.展开更多
Four benzocoumarin-based two-photon fluorescent probes(BH1-BH4)are proposed for ra-tiometric detection of hypochlorous acid(HClO)and their two-photon sensing perfor-mance are evaluated by means of time-dependent densi...Four benzocoumarin-based two-photon fluorescent probes(BH1-BH4)are proposed for ra-tiometric detection of hypochlorous acid(HClO)and their two-photon sensing perfor-mance are evaluated by means of time-dependent density func-tional theory and quadratic re-sponse theory.The effects of benzene-fused position on Stokes shift,fluorescence quantum yield and two-photon absorption are discussed comprehensively.The results show that fusing a benzene ring in coumarin can enhance Stokes shift efficiently.The benzene-fused position has important effects on these photophysical properties.The benzo[g]coumarins(BH1)and benzo[f]coumarins(BH2)derivatives have larger Stokes shifts in comparison with benzo[h]coumarins(BH3)and dihydrophenazine(BH4)derivatives.The two-photon absorp-tion of benzo[f]coumarins(BH2)derivative is much smaller than those of other benzo-coumarins derivatives.The large Stokes shift and increased two-photon action cross section can be achieved simultaneously in the dihydrophenazine(BH4)derivative.Therefore,the de-signed BH4 is expected to have superior performance for the ratiometric detection of HClO.To explore the reasons behind these effects,the intramolecular charge transfer degrees are il-lustrated quantitatively by plotting the hole-electron isosurface map,and the relation be-tween charge transfer and Stokes shift is revealed.A two-state model analysis is employed to understand two-photon absorption ability.Moreover,the fluorescence near-quenching mecha-nism of the product molecules B1 and B3 is explained by analyzing reorganization energy and Huang-Rhys factor,as well as related normal mode.Our research could contribute to the effi-cient design of ratiometric two-photon fluorescent probes with large Stokes shift and signifi-cant two-photon action cross section.展开更多
A piggyback pipeline is a special configuration of offshore pipelines for offshore oil and gas exploration and is characterized by the coupling of a large-diameter pipe with a small-diameter pipe. This study conducts ...A piggyback pipeline is a special configuration of offshore pipelines for offshore oil and gas exploration and is characterized by the coupling of a large-diameter pipe with a small-diameter pipe. This study conducts a numerical investigation of the transverse VIV characteristics of a piggyback pipeline at low Reynolds numbers, as the vortex shedding modes and vibration characteristics can be accurately represented under laminar flow conditions with minimal computational expense. The effects of influential factors, such as the mass ratio, position angle of the small pipe relative to the main pipe, and Reynolds number, on the VIV amplitude, frequency, vibration center, and mean lift coefficient are specifically examined. The results indicate that the mass ratio has a limited effect on the maximum VIV amplitude. However, as the mass ratio decreases, the lock-in region expands, and the vibration center of the piggyback pipeline deviates further from its original position. The VIV amplitude is minimized, and the lock-in region is the narrowest at a position angle of 45°, whereas the vibration center reaches its maximum displacement at a position angle of 135°. As the Reynolds number increases, the VIV amplitude slightly increases, accompanied by convergence of the vibration center toward its initial position. The mean lift coefficient and wake vortices are also analyzed to establish a connection with the vibration characteristics of the piggyback pipeline. The optimal configuration of the piggyback pipeline is also proposed on the basis of the present numerical results.展开更多
基金ThispaperissupportedbyNationalNatureScienceFoundation (No .5 96 35 16 0 )AdvancedUniversityDoctoralSubjectFoundation (No .980 2 1311)
文摘Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.
文摘A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis of fuzzy logic and rules. The simulation and experimental results show that this control system can obtain better dynamic and static characteristics.
文摘Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2002AA422260).
文摘A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge, And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system.
文摘Traditional CAD technique does not support the design processes such as function definition, conceptual design and preliminary design, which are most creative and play significant roles on the design quality. Because scheme design has close relationship with product structure, performance and technology cost, it is important for applying the intelligent CAD of scheme design to improve the quality and competitive level of the product. The definition and function of welding positioner are discussed in this paper. The new definition of welding positioner extends the research scope of welding positioner to welding fixture and welding positioning motion mechanism. The design process of welding fixture and positioning motion system is described, and the cased based and knowledge based design strategy of welding positioner scheme design intelligent CAD is then put forward, which lays foundation for developing proto type system of welding positioner scheme design.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0708902)the Ningbo Key Technology Research and Development Program(Grant No.2023Z018)+1 种基金the Liupanshan Laboratory Basic Research Program(Grant No.LPS-2024-KY-D-JC-0008)the Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘This paper presents an adaptive saturated integral sliding mode controller(ASISMC)integrated with an adaptive extended state observer(AESO)to address the challenges of nonlinear time-varying characteristics,parameter uncertainties,and external disturbances in valve positioner systems(VPS).To begin with,the VPS dynamic model is established by combining the valve positioner model,the control valve model,and the Euler-Lagrange model,where the uncertain parameters are estimated using the adaptive laws.Moreover,a tracking differentiator(TD)is implemented to ensure smooth and continuous signal processing.The AESO with structural self-regulation capability is also developed to estimate system perturbations and uncertainties effectively.Meanwhile,the proposed ASISMC is designed using adaptive laws based on the backstepping technique,further enhanced by setting saturation constraints on the integral sliding film surface.Finally,experimental validation confirms the superiority of the proposed approach over existing methods in improving control precision,response velocity,and disturbance rejection capability.
基金National Natural Science Foundation of China(U24A20714 to XMF and 82102238 to PC)。
文摘BACKGROUND:Tracheal intubation(TI)is a fundamental procedure for securing the airway or assisting ventilation in emergency medicine.Tracheal intubation in the lateral position(TILP)has been utilized in clinical practice,demonstrating potential advantages in specific scenarios,including emergency settings.However,there is a lack of comprehensive reviews and practical protocols on TILP application.To address this gap,we performed a narrative review,and provided evidence-based recommendations to formulate a practice protocol,to assist clinicians to effectively apply TILP.METHODS:We conducted a narrative review of TILP applications and developed recommendations based on clinical research evidence and clinical experience.Delphi method was used among the TILP consortium to grade the strength of the recommendations and to help reach consensus.The practice protocols were formulated as warranted by advancements in medical knowledge,technology,and practice.RESULTS:This narrative review summarized the current evidence on TILP application,highlighting its safety,efficacy,challenges,and potential complications.In total,24 recommendations and a clinical protocol for TILP application in emergency patients were established.CONCLUSION:TILP is a valuable technique in emergency medicine.We reviewed its application in emergency settings and formulated recommendations along with a clinical practice protocol.Future studies are needed to evaluate the safety and efficacy of TILP,broaden its scope of application,and explore effective training protocols.
基金financially supported by the Central Public-Interest Scientific Institution Basal Research Fund of Chinese Academy of Forestry(CAFYBB2021ZW002)the National Key Research and Development Program of China(2022YFF1300404)the National Natural Science Foundation of China(U21A2005)。
文摘Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution of hillslope soil moisture replenishment after precipitation determines vegetation survival and growth.Therefore,in this study experiments were performed on a hillslope in the Liupan Mountains,Ningxia Hui Autonomous Region,China,to quantify the unevenness of soil moisture replenishment.Soil water content(SWC)in the 0–60 cm layer and precipitation were monitored throughout the growing season in 2020 and 2021.The results showed that(1)Annual soil moisture replenishment was the highest at the mid-slope position,with an average of 309.9 mm,especially under moderate and heavy rain grade conditions,reaching 38.7% and 30.8% of the total replenishment,respectively;(2)Vertical replenishment played a dominant role in the total replenishment,accounting for 82.8%;lateral replenishment played an important but lesser role,accounting for up to 17.2% of the total replenishment;(3)Based on a soil moisture replenishment model established in this study,the maximal replenishment occurred at 90 m from the top of the slope;(4)The dominant factors contributing to the soil moisture replenishment were rainfall amount and saturated hydraulic conductivity(Ks).These findings suggest that attention should be given to both vertical and lateral soil moisture replenishment,and the mid-slope position could be preferred for site selection to achieve precise and integrated forest-water management on hillslopes in semi-arid mountainous regions.
文摘A general metal-free photochemcial oxidation of benzylic C—H bonds has been successfully accomplished via a hydrogen atom transfer(HAT)process.A range of high value-added aromatic ketones were facilely synthesized with high chemoselectivity under mild conditions.Moreover,the mild conditions by using air as the oxidant render the developed proto-col more ecofriendly and environmentally sustainable.
基金supported by the National Natural Science Foundation of China(62371465)Taishan Scholar Project of Shandong Province(ts201511020)the Chinese National Key Laboratory of Science and Technology on Information System Security(6142111190404).
文摘The syndrome a posteriori probability of the log-likelihood ratio of intercepted codewords is used to develop an algorithm that recognizes the polar code length and generator matrix of the underlying polar code.Based on the encoding structure,three theorems are proved,two related to the relationship between the length and rate of the polar code,and one related to the relationship between frozen-bit positions,information-bit positions,and codewords.With these three theorems,polar codes can be quickly reconstruced.In addition,to detect the dual vectors of codewords,the statistical characteristics of the log-likelihood ratio are analyzed,and then the information-and frozen-bit positions are distinguished based on the minimumerror decision criterion.The bit rate is obtained.The correctness of the theorems and effectiveness of the proposed algorithm are validated through simulations.The proposed algorithm exhibits robustness to noise and a reasonable computational complexity.
文摘Sunflower leaf photosynthesis strongly depends on the leaf position in the plant stem conditioning,which directly affects other physiological processes.Therefore,a study of the leaf’s physiological status regarding the leaf position in the stem was performed on sunflowers in the flowering stage.Eight differently positioned leaves were investigated,starting with the youngest leaf on the top of the stem to the leaves of the stem bottom,assigned as the oldest senescent leaves.According to chlorophyll fluorescence(ChlF)parameters connected to photosystem II(PSII)processes,significant changes in PSII functioning occurred only in the senescent leaves,while photosystem I(PSI)describing parameters showed a linear decrease with leaf age,i.e.,position on the stem.The antioxidative status of the leaves was dynamic,as stress indicators(lipid peroxidation and hydrogen peroxide content)fluctuated regarding leaf position on the stem,but no link was found between the activities of antioxidative enzymes and oxidative stress indicators.Linear decrease trend of secondary metabolites(mainly phenolic compounds)correlated with antioxidant activity,except for some phenolic acids(caffeic and ferulic acid),which increased in senescent leaves.The most changes in the physiological status of the leaves were confirmed in senescent leaves,which stand out the importance of younger leaves in maintaining the plant’s vitality after flowering,which is the most important for sunflower yield.
基金supported by the National Natural Science Foundation of China(No.32201304)the Fundamental Research Funds for the Central Universities(No.2412022QD026).
文摘Habitat fragmentation poses a significant threat to bird communities, especially those in open and semi-open ecosystems such as steppes. This study investigates how steppe birds adapt to and utilize fragmented habitats by combining niche modeling with ecological trait analysis. We conducted standardized point surveys to examine the habitat preferences of 32 bird species in Inner Mongolia, China, and quantified their habitat niche parameters using the Outlying Mean Index (OMI). Our results reveal distinct habitat preferences among species, with some thriving in intact environments while others are better adapted to fragmented areas. Grassland species showed high specialization along the fragmentation gradient, while others exhibited adaptability to varying levels of fragmentation. Using a Generalized Additive Model (GAM), we identified three key traits influencing habitat occupancy: hand-wing index, body mass, and range size. Specifically, species with medium hand-wing indices, moderate body mass, and larger range sizes were more likely to occupy heavily fragmented habitats. These findings provide empirical evidence on how habitat fragmentation affects bird species in steppe ecosystems. The study highlights the importance of functional traits in understanding avian responses to habitat fragmentation and offers a foundation for developing effective conservation strategies to preserve biodiversity in fragmented landscapes.
文摘Forest ecosystems can be characterized by a set of catenas arranged along the slope in mountainous areas as these affect microhabitat features,which in turn influence soil properties.Heretofore,few studies have examined how topographic variables affect soil properties and quality in semiarid regions.This study aimed to provide important insights into how catena position and shape influence soil properties,soil quality,and their interrelationships in a semiarid protected oak forest in western Iran.Basic soil properties were measured in the laboratory.In addition,the soil quality index(SQI)was calculated at different topographic positions along both convex(Λ-shaped)and concave(V-shaped)catenas at two soil depths(0-15 and 15-30 cm).The findings indicated that soil organic carbon and total nitrogen declined in the lower depth in both V-andΛ-shaped catenas and at all catena positions.The lowest porosity was observed in the lower depth at toeslope positions(TS)of both catenas.Substrate-induced respiration(SIR),microbial biomass carbon(MBC),and basal respiration(BR)were higher in the upper depths at TS positions on V-shaped catenas than onΛ-shaped catenas.These biological indices were consistently higher in the upper depths than in the lower depths across all positions of both catenas.SQI had the highest values at TS positions on both catenas and in the upper depths across all positions.Pearson correlations between soil properties indicated that SQI was most strongly and positively correlated with biological properties in both catenas.The nutrient levels,microbial activity,and soil porosity in both catena shapes and at both soil depths displayed a relatively downward trend with increasing elevation from toeslope to summit positions.The results showed that catena topographic sequence shape and position affected most of the soil properties,providing evidence of the important role of topography in creating pedodiversity in oak forest ecosystems.
基金supported by the Young Scientists Fund of National Natural Science Foundation of China(Grant Nos.12202202 and 12202494)the National Key Research and Development Program of China(Grant No.2021YFC3100700)。
文摘The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data at three ignition positions.The venting mechanism was revealed by the simulated concentration distribution,temperature profile,and airflow velocity.The results show rear ignition results in the external methane mass distribution taking the form of"mushroom"and columnar flames in the external space,which can be expressed as a third-order polynomial relationship with distance;central ignition forms a relationship of the form y=AxB.Front ignition causes the temperature to show a tendency to repeated oscillations(rising,falling,and rising).Central ignition generates the maximum vented airflow velocity(V_(max)=320 m/s)upon vent opening.The results indicate that it is acceptable to apply numerical simulation of methane explosions in practice.
基金the Obstetrics and Gynecology Hospital of Fudan University for supporting this project。
文摘Objectives A systematic review and network meta-analysis was conducted to evaluate the effectiveness of different childbirth positions in reducing the duration of the second stage of labor,providing evidence-based insights for obstetric institutions to guide interventions related to childbirth positions.Methods A comprehensive literature search was conducted in databases,including PubMed,Web of Science,the Cochrane Library,Embase,Wanfang Databases,China National Knowledge Infrastructure Databases(CNKI),China Science and Technology Journal Database(CSTJ),and China Biology Medicine disc(CBMdisc)to identify studies on the effectiveness of different childbirth positions in reducing the duration of the second stage of labor.The search included randomized controlled trials published from database inception to September 30,2024.The Cochrane risk-of-bias tool was used to assess the quality of the studies.Two independent reviewers screened the literature,extracted data,and evaluated study quality.Subsequently,a network meta-analysis was performed using STATA software.The study protocol has been registered in PROSPERO(CRD42023428217).Results This study analyzed data from 25 randomized controlled trials involving 9,844 women.The findings indicated that in comparison to lithotomy position,free position(MD=20.53,95%CI[11.38,29.68])and upright position(MD=−24.13,95%CI[−42.94,-5.32])were found to be superior in reducing the duration of the second stage of labor.Free position outperformed kneeling position(MD=21.48,95%CI[4.67,38.28])and squatting position(MD=23.43,95%CI[1.88,44.97]);upright position was superior to kneeling position(MD=−25.08,95%CI[−46.93,−3.22]);semirecumbent position surpassed squatting position(MD=19.71,95%CI[2.05,37.38]);and upright position was also superior to squatting position(MD=−27.03,95%CI[−51.48,−2.57]).According to the surface under the cumulative ranking curve(SUCRA),the upright position emerged as the most effective for reducing the duration of the second stage of labor(87.4%),followed by free position(81.1%),semirecumbent position(70.0%),and lateral position(62.3%).Conclusion These findings offer valuable insights for midwifery practice and help inform future research directions.Considering the limitations of this review,more larger-scale,multicenter randomized controlled trials are warranted to further evaluate the relative effectiveness of different childbirth positions in reducing the duration of the second stage of labor.
基金supported by China NSF Grants(62371225,62371227)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX250590).
文摘In this paper,we present a novel particle filter(PF)-based direct position tracking method utilizing multiple distributed observation stations.Traditional passive tracking methods are anchored on repetitive position estimation,where the set of consecutive estimates provides the tracking trajectory,such as Two-step and direct position determination methods.However,duplicate estimates can be computationally expensive.In addition,these techniques suffer from data association problems.The PF algorithm is a tracking method that avoids these drawbacks,but the conventional PF algorithm is unable to construct a likelihood function from the received signals of multiple observatories to determine the weights of particles.Therefore,we developed an improved PF algorithm with the likelihood function modified by the projection approximation subspace tracking with deflation(PASTd)algorithm.The proposed algorithm uses the projection subspace and spectral function to replace the likelihood function of PF.Then,the weights of particles are calculated jointly by multiple likelihood functions.Finally,the tracking problem of multiple targets is solved by multiple sets of particles.Simulations demonstrate the effectiveness of the proposed method in terms of computational complexity and tracking accuracy.
基金supported by the Shanghai Municipal Health Commission Funds(No.20214Y0026).
文摘The purpose of this study was to evaluate the clinical application of a rotating pod and assess its dosimetric considerations,positional accuracy,and anatomical structure stability.A pre-dosimetric study conducted on 11 patients revealed the potential for lung dose reduction using the rotational pod.Subsequently,seven patients underwent treatment with the rotational pod,and the target coverage and organs at risk doses were compared with those of conventional methods.The positional accuracy of the rotational pod,in collaboration with the imaging guidance system,was analyzed.The Dice similarity coefficient(DSC)was used to assess the settlement of tumors,trachea,and thoracic vertebrae after rotation for 20 min.In the pre-dosimetric study,there was no statistically significant difference in the volume of the internal gross tumor volume receiving≥99%of the prescription dose between the pod and conventional couch plans.However,compared to conventional couch plans,pod plans demonstrated a significant reduction in the average lung dose by 5-53%(p<0.01).Patient accrual,comprising seven cases,revealed reduced lung doses(9-26%)in four patients.For the other three patients,although there was no significant reduction in the lung dose,the use of the 90°beamline contributed to a decrease in the patient admission waiting time.The positional errors between the beams for lateral,longitudinal,vertical,ISO,pitch,and roll directions were 0.0 mm±5.3 mm,-1.2 mm±2.3 mm,-1.1 mm±2.7 mm,0.0°±0.6°,-0.1°±0.5°,and 0.0°±0.8°,respectively.The DSC for the target region and thoracic vertebrae between CT images captured before and after a 20-min rotation was higher than 0.85,whereas the DSC for the trachea was approximately 0.8.The preliminary clinical application of the rotational pod for lung tumors in fixed ion beamlines shows promise for achieving target coverage,reducing lung dose,and maintaining position accuracy.
基金supported in part by the National Specialized Research Project(No.XXZ3-XX21-3).
文摘The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to address three typical problems of ttitude control in the full-scale aircraft static tests:(1)The coupling of rigid-body displacement and elastic deformation after large deformation,(2)the difficulty of characterizing the aircraft attitude by measurable structure,and(3)the insufficient adaptability of the center of gravity reference to complex loading conditions.The methodology involves the establishment of two observation coordinate systems,a ground coordinate system and an airframe coordinate system,and two deformation states,before and after airframe deformation.A subsequent analysis of the parameter changes of these two states under different coordinate systems is then undertaken,with the objective being to identify the key parameters affecting the attitude control accuracy of large deformation aircraft.Three optimization objective functions are established according to the test loading characteristics and the purpose of the test:(1)To minimize the full-scale aircraft loading angle error,(2)to minimize the full-scale aircraft loading additional load,and(3)to minimize the full-scale aircraft loading wing root additional bending moment.The optimization calculation results are obtained by using the particle swarm optimization algorithm,and the typical full-scale aircraft static test load condition of large passenger aircraft is taken as an example.The analysis of the results demonstrates that by customizing the measurable structure of the aircraft as the observation point for the aircraft attitude,and by obtaining the translational and rotational control parameters of the observation point during the test based on the optimization objective function,the results are reasonable,and the project can be implemented and used to control the aircraft's attitude more accurately in complex force test conditions.
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2020MA078)。
文摘Four benzocoumarin-based two-photon fluorescent probes(BH1-BH4)are proposed for ra-tiometric detection of hypochlorous acid(HClO)and their two-photon sensing perfor-mance are evaluated by means of time-dependent density func-tional theory and quadratic re-sponse theory.The effects of benzene-fused position on Stokes shift,fluorescence quantum yield and two-photon absorption are discussed comprehensively.The results show that fusing a benzene ring in coumarin can enhance Stokes shift efficiently.The benzene-fused position has important effects on these photophysical properties.The benzo[g]coumarins(BH1)and benzo[f]coumarins(BH2)derivatives have larger Stokes shifts in comparison with benzo[h]coumarins(BH3)and dihydrophenazine(BH4)derivatives.The two-photon absorp-tion of benzo[f]coumarins(BH2)derivative is much smaller than those of other benzo-coumarins derivatives.The large Stokes shift and increased two-photon action cross section can be achieved simultaneously in the dihydrophenazine(BH4)derivative.Therefore,the de-signed BH4 is expected to have superior performance for the ratiometric detection of HClO.To explore the reasons behind these effects,the intramolecular charge transfer degrees are il-lustrated quantitatively by plotting the hole-electron isosurface map,and the relation be-tween charge transfer and Stokes shift is revealed.A two-state model analysis is employed to understand two-photon absorption ability.Moreover,the fluorescence near-quenching mecha-nism of the product molecules B1 and B3 is explained by analyzing reorganization energy and Huang-Rhys factor,as well as related normal mode.Our research could contribute to the effi-cient design of ratiometric two-photon fluorescent probes with large Stokes shift and signifi-cant two-photon action cross section.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 52371289 and 51979192)。
文摘A piggyback pipeline is a special configuration of offshore pipelines for offshore oil and gas exploration and is characterized by the coupling of a large-diameter pipe with a small-diameter pipe. This study conducts a numerical investigation of the transverse VIV characteristics of a piggyback pipeline at low Reynolds numbers, as the vortex shedding modes and vibration characteristics can be accurately represented under laminar flow conditions with minimal computational expense. The effects of influential factors, such as the mass ratio, position angle of the small pipe relative to the main pipe, and Reynolds number, on the VIV amplitude, frequency, vibration center, and mean lift coefficient are specifically examined. The results indicate that the mass ratio has a limited effect on the maximum VIV amplitude. However, as the mass ratio decreases, the lock-in region expands, and the vibration center of the piggyback pipeline deviates further from its original position. The VIV amplitude is minimized, and the lock-in region is the narrowest at a position angle of 45°, whereas the vibration center reaches its maximum displacement at a position angle of 135°. As the Reynolds number increases, the VIV amplitude slightly increases, accompanied by convergence of the vibration center toward its initial position. The mean lift coefficient and wake vortices are also analyzed to establish a connection with the vibration characteristics of the piggyback pipeline. The optimal configuration of the piggyback pipeline is also proposed on the basis of the present numerical results.