期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进FasterNet和YOLOv8s的轨道扣件缺陷快速检测方法
1
作者
刘二林
李涛
冯海照
《北京交通大学学报》
北大核心
2025年第6期64-74,共11页
针对轨道扣件缺陷特征复杂且多样,传统检测方法存在效率低下和漏检率高的问题,基于YOLOv8s网络提出一种轻量级轨道扣件检测模型FPSI-YOLOv8s.首先,为降低模型复杂度,采用速度更快、参数量更小的FasterNet网络替代YOLOv8s中的CSPDarkNet5...
针对轨道扣件缺陷特征复杂且多样,传统检测方法存在效率低下和漏检率高的问题,基于YOLOv8s网络提出一种轻量级轨道扣件检测模型FPSI-YOLOv8s.首先,为降低模型复杂度,采用速度更快、参数量更小的FasterNet网络替代YOLOv8s中的CSPDarkNet53主干网络进行扣件缺陷特征提取;其次,采用位置感知循环卷积对YOLOv8s颈部的C2f模块进行重新设计,命名为FasterBlock,以实现多尺度特征融合与模型轻量化;再次,在SPPF层后引入空间分组增强(Spatial Group-wise Enhance,SGE)注意力机制,增强模型对扣件缺陷特征的敏感度,防止检测精度大幅下降;最后,使用Inner-IoU损失函数替代CIoU损失函数,加强模型对不同尺度和形状目标的检测能力,通过精细化的质量评估和梯度增益策略,增强模型的鲁棒性.实验结果表明:改进后的模型在仅损失0.7%检测精度的情况下,模型大小降低了29.78%,计算量和参数量分别减少了29.93%和30.46%,能够在保持较高精度的同时实现轻量化和提升运行效率,在轨道扣件的快速巡检领域具有良好的应用前景.
展开更多
关键词
YOLOv8s
轻量化
轨道扣件
位置感知循环卷积
空间分组增强注意力机制
在线阅读
下载PDF
职称材料
题名
基于改进FasterNet和YOLOv8s的轨道扣件缺陷快速检测方法
1
作者
刘二林
李涛
冯海照
机构
兰州交通大学机电工程学院
兰州交通大学自动化与电气工程学院
出处
《北京交通大学学报》
北大核心
2025年第6期64-74,共11页
基金
国家自然科学基金(72171106)。
文摘
针对轨道扣件缺陷特征复杂且多样,传统检测方法存在效率低下和漏检率高的问题,基于YOLOv8s网络提出一种轻量级轨道扣件检测模型FPSI-YOLOv8s.首先,为降低模型复杂度,采用速度更快、参数量更小的FasterNet网络替代YOLOv8s中的CSPDarkNet53主干网络进行扣件缺陷特征提取;其次,采用位置感知循环卷积对YOLOv8s颈部的C2f模块进行重新设计,命名为FasterBlock,以实现多尺度特征融合与模型轻量化;再次,在SPPF层后引入空间分组增强(Spatial Group-wise Enhance,SGE)注意力机制,增强模型对扣件缺陷特征的敏感度,防止检测精度大幅下降;最后,使用Inner-IoU损失函数替代CIoU损失函数,加强模型对不同尺度和形状目标的检测能力,通过精细化的质量评估和梯度增益策略,增强模型的鲁棒性.实验结果表明:改进后的模型在仅损失0.7%检测精度的情况下,模型大小降低了29.78%,计算量和参数量分别减少了29.93%和30.46%,能够在保持较高精度的同时实现轻量化和提升运行效率,在轨道扣件的快速巡检领域具有良好的应用前景.
关键词
YOLOv8s
轻量化
轨道扣件
位置感知循环卷积
空间分组增强注意力机制
Keywords
YOLOv8s
lightweight
rail fastener
position-aware
recurrent
convolution
(
parconv
)
Spatial Group-wise Enhance(SGE)attention mechanism
分类号
TP391 [自动化与计算机技术—计算机应用技术]
U216.3 [交通运输工程—道路与铁道工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进FasterNet和YOLOv8s的轨道扣件缺陷快速检测方法
刘二林
李涛
冯海照
《北京交通大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部