Null compensation interferometry is the primary testing method for the manufacture of ultra-high-precision aspheric mirrors.The crosstalk fringes generated by stray light in interferometry can affect accuracy and pote...Null compensation interferometry is the primary testing method for the manufacture of ultra-high-precision aspheric mirrors.The crosstalk fringes generated by stray light in interferometry can affect accuracy and potentially prevent the testing from proceeding normally.Position errors include the decenter error,tilt error,and distance error.During the testing process,position errors will impact the testing accuracy and the crosstalk fringes generated by stray light.To determine the specific impact of position errors,we use the concept of Hindle shell testing of a convex aspheric mirror,and propose the simulation method of crosstalk fringes in null compensation interferometry.We also propose evaluation indices of crosstalk fringes in interferometry and simulate the influence of position errors on the crosstalk fringes.This work aims to help improve the design of compensation interferometry schemes,enhance the feasibility of the design,reduce engineering risks,and improve efficiency.展开更多
Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as...Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.展开更多
Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under...Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under the load and the inertial effects at every instant. As a matter of fact, the actual measure of the pose error is often replaced by an uncertainty measure. However, a side effect of the existence of clearances is that they can cause sudden changes in the posture of the mechanism as a motion is performed. Such discontinuities in the position produce task defects and impacts. In this work a tool to determine the pose error due to clearances is presented together with a discontinuity analysis. In addition, effects of mass distribution and inertial effects on such discontinuities are expounded, taking a 3-PRS robot as example.展开更多
The single-point bending method,based on atomic force microscopy(AFM),has been extensively validated for characterizing the structural mechanical properties of micro-and nanobeams.Nevertheless,the influence of AFM pro...The single-point bending method,based on atomic force microscopy(AFM),has been extensively validated for characterizing the structural mechanical properties of micro-and nanobeams.Nevertheless,the influence of AFM probe loading and positioning has yet to be subjected to comprehensive investigation.This paper proposes a novel bending-test method based on sequential loading points,in which a series of evenly distributed loads are applied along the length of the central axis on the upper surface of the cantilever.The preliminary measured values of Young’s modulus for an unknown alloy material were 193,178,and 176 GPa,exhibiting a considerable degree of dispersion.An algorithm for self-correction of the positioning error was developed,and this resulted in a positioning error of 53 nm and a final converged Young’s modulus of 161 GPa.展开更多
A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency a...A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.展开更多
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ...The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.展开更多
In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution de...In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.展开更多
An efficient solution for locating a target was proposed, which by using time difference of arrival (TDOA) measurements in the presence of random sensor position errors to increase the accuracy of estimation. The ca...An efficient solution for locating a target was proposed, which by using time difference of arrival (TDOA) measurements in the presence of random sensor position errors to increase the accuracy of estimation. The cause of position estimation errors in two-stage weighted least squares (TSWLS) method is analyzed to develop a simple and effective method for improving the localization performance. Specifically, the reference sensor is selected again and the coordinate system is rotated according to preliminary estimated target position by using TSWLS method, and the final position estimation of the target is obtained by using weighted least squares (WLS). The proposed approach exhibits a closed-form and is as efficient as TSWLS method. Simulation results show that the proposed approach yields low estimation bias and improved robustness with increasing sensor position errors and thus can easily achieve the Cramer-Rao lower bound (CRLB) easily and effectively improve the localization accuracy.展开更多
Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tens...Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tensor, field differentiation is generally approximated by field difference. As a result, magnetic objects positioning by magnetic field gradient tensor measurement always involves an inherent error caused by sensor sizes, leading to a reduction in detectable distance and detectable angle. In this paper, the inherent positioning error caused by magnetic field gradient tensor measurement is calculated and corrected by iterations based on the systematic position error distribution patterns. The results show that, the detectable distance range and the angle range of an ac magnetic object(2.44 Am^2@1 kHz) can be increased from(0.45 m, 0.75 m),(0?, 25?) to(0.30 m, 0.80 m),(0?,80?), respectively.展开更多
Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optica...Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.展开更多
The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of air...The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of airborne LIDAR, the errors from pulse broadening induced by laser beam di vergence angle are modeled and qualitatively analyzed for different terrain surfaces. Simulated results of positioning errors and suggestions to reduce them are given for the flat surface, the downhill of slope surface, and the uphill surface.展开更多
Objective To explore the differences in three different registration methods of cone beam computed tomography(CBCT)-guided down-regulated intense radiation therapy for lung cancer as well as the effects of tumor locat...Objective To explore the differences in three different registration methods of cone beam computed tomography(CBCT)-guided down-regulated intense radiation therapy for lung cancer as well as the effects of tumor location,treatment mode,and tumor size on registration.Methods This retrospective analysis included 80 lung cancer patients undergoing radiotherapy in our hospital from November 2017 to October 2019 and compared automatic bone registration,automatic grayscale(t+r)registration,and automatic grayscale(t)positioning error on the X-,Y-,and Z-axes under three types of registration methods.The patients were also grouped according to tumor position,treatment mode,and tumor size to compare positioning errors.Results On the X-,Y-,and Z-axes,automatic grayscale(t+r)and automatic grayscale(t)registration showed a better trend.Analysis of the different treatment modes showed differences in the three registration methods;however,these were not statistically significant.Analysis according to tumor sizes showed significant differences between the three registration methods(P<0.05).Analysis according to tumor positions showed differences in the X-and Y-axes that were not significant(P>0.05),while the autopsy registration in the Z-axis showed the largest difference in the mediastinal and hilar lymph nodes(P<0.05).Conclusion The treatment mode was not the main factor affecting registration error in lung cancer.Three registration methods are available for tumors in the upper and lower lungs measuring<3 cm;among these,automatic gray registration is recommended,while any gray registration method is recommended for tumors located in the mediastinal hilar site measuring<3 cm and in the upper and lower lungs≥3 cm.展开更多
The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in ...The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).展开更多
To determine the distribution of positional error of a line segment, Monte Carlo approach is applied to simulate the probability density function of a line segment with the assumption that the error of endpoints in a ...To determine the distribution of positional error of a line segment, Monte Carlo approach is applied to simulate the probability density function of a line segment with the assumption that the error of endpoints in a line segment follows a two-dimensional normal distribution. For such purpose, a stochastic generator used for uncertain endpoints with the two-dimensional normal distribution is presented. This forms the basis of the generation of random line segment for the simulation of the error model of a whole line segment. The error models cover the cases where two endpoints are either independent or dependent to each other, also including a special case that the distance between two random endpoints in a line segment is close enough.展开更多
Micro milling has many advantages in fabricating three-dimensional(3D) structure in micrometer scale. The micro milling machine tool with high positioning accuracy is of great importance for getting micro structure wi...Micro milling has many advantages in fabricating three-dimensional(3D) structure in micrometer scale. The micro milling machine tool with high positioning accuracy is of great importance for getting micro structure with high profile precision and good surface quality. Meanwhile, the method of position error compensation is a good way to improve the accuracy of the micro milling machine tools. In this paper,a software method is adopted to compensate the positioning error and improve the positioning accuracy. According to error cancellation theory,the compensation values are generated and compensation tables are built to adjust the positioning error in the NC system based on Industrial Motion and Automation Control( IMAC). The positioning accuracy of linear motor is ± 0. 3 μm without backlash after compensation. In order to verify the effectiveness of compensation on the machining performance,concave spherical surfaces are processed on the micro milling machine tool. The experimental results show that the profile radius error of the spherical surface machined with compensation decreases more than 60%.展开更多
The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location ...The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.展开更多
This paper presents a method of rapid machine tool error modeling, separation, and compensation using grating ruler. A robust modeling procedure for geometric errors is developed and a fast data processing algorithm i...This paper presents a method of rapid machine tool error modeling, separation, and compensation using grating ruler. A robust modeling procedure for geometric errors is developed and a fast data processing algorithm is designed by using the error separation technique. After compensation with the new method, the maximum position error of the experiment workbench can be reduced from 400 μm to 15 μm. The experimental results show the effectiveness and accuracy of this method.展开更多
Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been pre...Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.展开更多
This paper proposes a new approach to assess the positional accuracy of maps generated by overlaying multi_scale spatial data layers with different levels of positional accuracy.The existing techniques for assessing t...This paper proposes a new approach to assess the positional accuracy of maps generated by overlaying multi_scale spatial data layers with different levels of positional accuracy.The existing techniques for assessing the positional accuracy of point,line and polygon features is first examined.Then a taxonomy of graphic features on the derived maps is developed by analyzing the specific processes of overlay operations.Finally,a detailed description of the new approach is provided and the implementation of this new method in practical applications is described.展开更多
基金the National Key Research and Development Program of China(2022YFB3403404)the Youth Innovation Promotion Association,CAS(2022213)the National Natural Science Foundation of China(62127901 and 62305334).
文摘Null compensation interferometry is the primary testing method for the manufacture of ultra-high-precision aspheric mirrors.The crosstalk fringes generated by stray light in interferometry can affect accuracy and potentially prevent the testing from proceeding normally.Position errors include the decenter error,tilt error,and distance error.During the testing process,position errors will impact the testing accuracy and the crosstalk fringes generated by stray light.To determine the specific impact of position errors,we use the concept of Hindle shell testing of a convex aspheric mirror,and propose the simulation method of crosstalk fringes in null compensation interferometry.We also propose evaluation indices of crosstalk fringes in interferometry and simulate the influence of position errors on the crosstalk fringes.This work aims to help improve the design of compensation interferometry schemes,enhance the feasibility of the design,reduce engineering risks,and improve efficiency.
基金supported by the National Natural Science Foundation of China (62071144)
文摘Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.
文摘Clearances at joints cause an uncertainty in the actual posture of the end-effector of any mechanism. This uncertainty relays on the clearance dimension and the way these clearances are taken up by the mechanism under the load and the inertial effects at every instant. As a matter of fact, the actual measure of the pose error is often replaced by an uncertainty measure. However, a side effect of the existence of clearances is that they can cause sudden changes in the posture of the mechanism as a motion is performed. Such discontinuities in the position produce task defects and impacts. In this work a tool to determine the pose error due to clearances is presented together with a discontinuity analysis. In addition, effects of mass distribution and inertial effects on such discontinuities are expounded, taking a 3-PRS robot as example.
文摘The single-point bending method,based on atomic force microscopy(AFM),has been extensively validated for characterizing the structural mechanical properties of micro-and nanobeams.Nevertheless,the influence of AFM probe loading and positioning has yet to be subjected to comprehensive investigation.This paper proposes a novel bending-test method based on sequential loading points,in which a series of evenly distributed loads are applied along the length of the central axis on the upper surface of the cantilever.The preliminary measured values of Young’s modulus for an unknown alloy material were 193,178,and 176 GPa,exhibiting a considerable degree of dispersion.An algorithm for self-correction of the positioning error was developed,and this resulted in a positioning error of 53 nm and a final converged Young’s modulus of 161 GPa.
基金National Natural Science Foundation of China(No.12472038)Natural Science Foundation of Jiangsu Province(No.BK20230688)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJB440004)Key Research and Development Program of Xuzhou(No.KC22404)Research Fund for Doctoral Degree Teachers of Jiangsu Normal University of China(No.22XFRS011).
文摘A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.
基金the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the Interdisciplinary Innovation Fund of Natural Science,Nanchang University(Grant No.9167-28220007-YB2107).
文摘The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.
文摘In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.
基金supported by the National Natural Science Foundation of China (61271236, 61601245)the Open Research Program of the State Key Laboratory of Millimeter Waves (K201724)the China Postdoctoral Science Foundation Funded Project (2016M601693)
文摘An efficient solution for locating a target was proposed, which by using time difference of arrival (TDOA) measurements in the presence of random sensor position errors to increase the accuracy of estimation. The cause of position estimation errors in two-stage weighted least squares (TSWLS) method is analyzed to develop a simple and effective method for improving the localization performance. Specifically, the reference sensor is selected again and the coordinate system is rotated according to preliminary estimated target position by using TSWLS method, and the final position estimation of the target is obtained by using weighted least squares (WLS). The proposed approach exhibits a closed-form and is as efficient as TSWLS method. Simulation results show that the proposed approach yields low estimation bias and improved robustness with increasing sensor position errors and thus can easily achieve the Cramer-Rao lower bound (CRLB) easily and effectively improve the localization accuracy.
基金supported by the National Natural Science Foundation of China(61473023)
文摘Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tensor, field differentiation is generally approximated by field difference. As a result, magnetic objects positioning by magnetic field gradient tensor measurement always involves an inherent error caused by sensor sizes, leading to a reduction in detectable distance and detectable angle. In this paper, the inherent positioning error caused by magnetic field gradient tensor measurement is calculated and corrected by iterations based on the systematic position error distribution patterns. The results show that, the detectable distance range and the angle range of an ac magnetic object(2.44 Am^2@1 kHz) can be increased from(0.45 m, 0.75 m),(0?, 25?) to(0.30 m, 0.80 m),(0?,80?), respectively.
基金Project(51475479) supported by the National Natural Science Foundation of ChinaProject(2017YFB1104800) supported by the National Key Research and Development Program of China+2 种基金Project(2016GK2098) supported by the Key Research and Development Program of Hunan Province,ChinaProject(ZZYJKT2017-07) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(JMTZ201804) supported by the Key Laboratory for Precision&Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.
基金Supported by the National Basic Research Program of China("973"Program)(2009CB72400401A)
文摘The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of airborne LIDAR, the errors from pulse broadening induced by laser beam di vergence angle are modeled and qualitatively analyzed for different terrain surfaces. Simulated results of positioning errors and suggestions to reduce them are given for the flat surface, the downhill of slope surface, and the uphill surface.
基金Supported by grants from the Nanchong City School Cooperation Project(No.18SXHZ0542)Hubei Chen Xiaoping Science and Technology Development Foundation Project(No.CXPJJH11900002-037)Sichuan Medical Research Youth Innovation Project(No.Q18031).
文摘Objective To explore the differences in three different registration methods of cone beam computed tomography(CBCT)-guided down-regulated intense radiation therapy for lung cancer as well as the effects of tumor location,treatment mode,and tumor size on registration.Methods This retrospective analysis included 80 lung cancer patients undergoing radiotherapy in our hospital from November 2017 to October 2019 and compared automatic bone registration,automatic grayscale(t+r)registration,and automatic grayscale(t)positioning error on the X-,Y-,and Z-axes under three types of registration methods.The patients were also grouped according to tumor position,treatment mode,and tumor size to compare positioning errors.Results On the X-,Y-,and Z-axes,automatic grayscale(t+r)and automatic grayscale(t)registration showed a better trend.Analysis of the different treatment modes showed differences in the three registration methods;however,these were not statistically significant.Analysis according to tumor sizes showed significant differences between the three registration methods(P<0.05).Analysis according to tumor positions showed differences in the X-and Y-axes that were not significant(P>0.05),while the autopsy registration in the Z-axis showed the largest difference in the mediastinal and hilar lymph nodes(P<0.05).Conclusion The treatment mode was not the main factor affecting registration error in lung cancer.Three registration methods are available for tumors in the upper and lower lungs measuring<3 cm;among these,automatic gray registration is recommended,while any gray registration method is recommended for tumors located in the mediastinal hilar site measuring<3 cm and in the upper and lower lungs≥3 cm.
基金supported by the Fundamental Research Funds for the Central Universities(ZYGX2009J016)
文摘The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).
基金Funded by the National Natural Science Foundation of China (N0. 40501053), the Open Research Fund Program of LIESMARS (No. WKL040304) and theOpen Research Fund Program of Key Laboratory of Geomatics and Digital Technology, Shandong Province (No. SD040201)
文摘To determine the distribution of positional error of a line segment, Monte Carlo approach is applied to simulate the probability density function of a line segment with the assumption that the error of endpoints in a line segment follows a two-dimensional normal distribution. For such purpose, a stochastic generator used for uncertain endpoints with the two-dimensional normal distribution is presented. This forms the basis of the generation of random line segment for the simulation of the error model of a whole line segment. The error models cover the cases where two endpoints are either independent or dependent to each other, also including a special case that the distance between two random endpoints in a line segment is close enough.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50935003)
文摘Micro milling has many advantages in fabricating three-dimensional(3D) structure in micrometer scale. The micro milling machine tool with high positioning accuracy is of great importance for getting micro structure with high profile precision and good surface quality. Meanwhile, the method of position error compensation is a good way to improve the accuracy of the micro milling machine tools. In this paper,a software method is adopted to compensate the positioning error and improve the positioning accuracy. According to error cancellation theory,the compensation values are generated and compensation tables are built to adjust the positioning error in the NC system based on Industrial Motion and Automation Control( IMAC). The positioning accuracy of linear motor is ± 0. 3 μm without backlash after compensation. In order to verify the effectiveness of compensation on the machining performance,concave spherical surfaces are processed on the micro milling machine tool. The experimental results show that the profile radius error of the spherical surface machined with compensation decreases more than 60%.
基金supported by the Joint Civil Aviation Fund of National Natural Science Foundation of China(Nos.U1533108 and U1233112)
文摘The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.
文摘This paper presents a method of rapid machine tool error modeling, separation, and compensation using grating ruler. A robust modeling procedure for geometric errors is developed and a fast data processing algorithm is designed by using the error separation technique. After compensation with the new method, the maximum position error of the experiment workbench can be reduced from 400 μm to 15 μm. The experimental results show the effectiveness and accuracy of this method.
基金The authors extend their appreciation to the National University of Sciences and Technology for funding this work through the Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.
文摘This paper proposes a new approach to assess the positional accuracy of maps generated by overlaying multi_scale spatial data layers with different levels of positional accuracy.The existing techniques for assessing the positional accuracy of point,line and polygon features is first examined.Then a taxonomy of graphic features on the derived maps is developed by analyzing the specific processes of overlay operations.Finally,a detailed description of the new approach is provided and the implementation of this new method in practical applications is described.