The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suf...The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suffer from low selectivity and poor mechanical stability.Here,we used rigid naphthalene-containing polybenzimidazole(NPBI)to prepare a porous membrane with unique egg-shaped pores by adjusting solvent/non-solvent exchange in NIPS.The dense pores with a size of 3.6Åarranged dispersedly between egg-shaped pores.The rigid NPBI and 3.6-Åsmall pores enabled the membrane high mechanical strength.The thickness was thus decreased to 1.4μm,which exhibited an ultrahigh tensile strength of 463.54 MPa.The dense pores were also smaller than hydrated vanadium ions,achieving a low permeability of 2.28×10^(-7)cm^(2)/h,indicating high selectivity.This is the first time to prepare such a highly selective and mechanically stable ultrathin porous membrane by NIPS.Importantly,the ion-transport pathways in the 1.4μm membrane were shortened,decreasing the area resistance to as low as 0.015Ωcm 2.Demonstrated in a vanadium flow battery,its coulombic efficiency was 98.57%and energy efficiency reached 81.72%at 200 mA/cm 2.This study proposes an effective strategy to prepare highperformance ultrathin porous membranes for flow batteries.展开更多
High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as d...High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.展开更多
Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous mem...Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous membrane has significant effect on mass transfer process. The permeabilities of five kinds of gas, He, N2, O2, CO2 and water vapor, across six polytetrafluoroethylene(PTFE) flat membranes were tested experimentally. Results indicated that the greater the membrane mean pore size and the wider the pore size distribution are, the higher the gas permeability. A gas permeation model, including the effects of membrane structure parameter and gas properties, was established. A comprehensive characteristic parameter (including porosity, thickness and tortuosity) was found more effective to express the influence of membrane structure in gas permeation process. The predicted permeation coefficients were in good agreement with experimental data.展开更多
Organs-on-chips composed of a porous membrane-separated,double-layered channels are used widely in elucidating the effects of cell co-culture and flow shear on biological functions.While the diversity of channel geome...Organs-on-chips composed of a porous membrane-separated,double-layered channels are used widely in elucidating the effects of cell co-culture and flow shear on biological functions.While the diversity of channel geometry and membrane permeability is applied,their quantitative correlation with flow features is still unclear.Immersed boundary methods(IBM)simulations and theoretical modelling were performed in this study.Numerical simulations showed that channel length,height and membrane permeability jointly regulated the flow features of flux,penetration velocity and wall shear stress(WSS).Increase of channel length,lower channel height or membrane permeability monotonically reduced the flow flux,velocity and WSS in upper channel before reaching a plateau.While the flow flux in lower channel monotonically increased with the increase of each factor,the WSS surprisingly exhibited a biphasic pattern with first increase and then decrease with increase of lower channel height.Moreover,the transition threshold of maximum WSS was sensitive to the channel length and membrane permeability.Theoretical modeling,integrating the transmembrane pressure difference and inlet flow flux with chip geometry and membrane permeability,was in good agreement with IBM simulations.These analyses provided theoretical bases for optimizing flow-specified chip design and evaluating flow microenvironments of in vivo tissue.展开更多
Hydrophilic surface modification of poly(phthalazinone ether sulfone ketone)(PPESK) porous membranes was achieved via surface-initiated atom transfer radical polymerization(ATRP) in aqueous medium.Prior to ATRP.chloro...Hydrophilic surface modification of poly(phthalazinone ether sulfone ketone)(PPESK) porous membranes was achieved via surface-initiated atom transfer radical polymerization(ATRP) in aqueous medium.Prior to ATRP.chloromethyl groups were introduced onto PPESK main chains by chloromethylation.Chloromethvlated PPESK(CMPPESK) was fabricated into porous membrane through phase inversion technique.Hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate)(P(PEGMA)) brushes were grafted from CMPPESK membrane ...展开更多
Catalytic bubble-free hydrogenation reduction of azo dye by porous membranes loaded with palladium (Pd) nanoparticles was studied for the first time. The effects of Pd loading, dye concentration and reuse repetition...Catalytic bubble-free hydrogenation reduction of azo dye by porous membranes loaded with palladium (Pd) nanoparticles was studied for the first time. The effects of Pd loading, dye concentration and reuse repetitions of membranes were investigated. In reduction, the dye concentration decreased whereas the pH rose gradually. An optimal Pd loading was found. The catalytic membranes were able to be reused more than 3 times.展开更多
This study was performed to investigate the availability of forward osmosis(FO)for microalgae harvesting using sulfonated polyethersulfone(SPES)/PES porous membranes.In FO process,porous membranes(<25.0 L m^−2 h^−1...This study was performed to investigate the availability of forward osmosis(FO)for microalgae harvesting using sulfonated polyethersulfone(SPES)/PES porous membranes.In FO process,porous membranes(<25.0 L m^−2 h^−1)exhibited more superior water flux than TFC FO membranes(<2.6 L m^−2 h^−1).Furthermore,the incorporation of SPES has been demonstrated to enhance membrane performance.The effects of SPES content on pore structure and separation performance were investigated.Compared with pure PES porous membranes,porous membranes with 40%SPES yielded an improved hydrophilicity and greater porosity.It exhibited two times higher water fluxes than the pure PES porous membrane.For microalgae harvesting,AL-FS mode(active layer facing the feed solution)was more favourable than AL-DS mode(active layer facing the draw solution)because less deposited microalgae on the active layer mitigate the membrane biofouling.FO operation combined with SPES/PES porous membranes is conducive to preserving microalgae cell integrity under the mild condition.In addition,FO membrane can be cleaned by a simple water rinse.Potential implications were highlighted as a sustainable method for microalgae harvesting because of no pressure input and less chemical cleaning demand.展开更多
Oblique surface waves incident on a fixed vertical porous membrane of various geometric configurations is analyzed here.The mixed boundary value problem is modified into easily resolvable problems by using a connectio...Oblique surface waves incident on a fixed vertical porous membrane of various geometric configurations is analyzed here.The mixed boundary value problem is modified into easily resolvable problems by using a connection.These problems are reduced to that of solving a couple of integral equations.These integral equations are solved by a one-term or a two-term Galerkin method.The method involves a basis functions consists of simple polynomials multiplied with a suitable weight functions induced by the barrier.Coefficient of reflection and total wave energy are numerically evaluated and analyzed against various wave parameters.Enhanced reflection is found for all the four barrier configurations.展开更多
The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pore...The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.展开更多
Catalytic CO_(2)conversion has witnessed a dynamic growth in recent decades.Various materials have been applied to reduce CO_(2)into fuels and value-added chemicals.Normally,the powder-based catalysts cannot be direct...Catalytic CO_(2)conversion has witnessed a dynamic growth in recent decades.Various materials have been applied to reduce CO_(2)into fuels and value-added chemicals.Normally,the powder-based catalysts cannot be directly utilized for CO_(2)conversion.Much attention was paid to the study of catalytic membranes in order to overcome this issue,since it is convenient for catalytic membranes to be employed in devices for practical applications.In this review,the recent research development of porous catalytic membranes for CO_(2)conversion is summarized.The preparations of representative porous catalytic membranes and their CO_(2)conversion methods,including electrocatalysis,photocatalysis,photoelectrocatalysis,thermalcatalysis and biocatalysis,are discussed in detail.This review is expected to provide deep understanding on the utilization of porous catalytic membranes for CO_(2)conversion.展开更多
Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subjec...Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.展开更多
The development of strategies for producing welldefined chiral porous membranes for the rapid and efficient enantioseparation of racemic mixtures remains a great challenge.Herein,we introduce an innovative,simple,and ...The development of strategies for producing welldefined chiral porous membranes for the rapid and efficient enantioseparation of racemic mixtures remains a great challenge.Herein,we introduce an innovative,simple,and easily scalable synthetic strategy to manufacture chiral porous polymer membranes(CPPMs)bearing chiral NH groups by crosslinking single-component chiral poly(ionic liquid)s(PILs)with water molecules via hydrogen(H)-bonding.展开更多
Porous materials have become a burgeoning research interest in materials science because of their intrinsic porous characteristics,versatile chemical compositions,and abundant functionalities.Recently,inspired by natu...Porous materials have become a burgeoning research interest in materials science because of their intrinsic porous characteristics,versatile chemical compositions,and abundant functionalities.Recently,inspired by natural superwetting surfaces originating from the cooperation of surface energy and surface geometry,porous membranes with special wettabilities are finding emerging opportunities associated with a wide variety of environmental and energy-related applications.This review will present an overview of the state-of-the-art research on the designed fabrications and applications of superwetting porous membranes based on zeolites,metal–organic frameworks(MOFs),porous organic materials(POMs),and mesoporous materials.General synthetic strategies for the fabrication of porous membranes(e.g.,hydrothermal/solvothermal crystallization,interfacial polymerization,electrospinning,etc.),and principles for tuning the wettability of porous membranes through surface energy modulation are introduced.Furthermore,their emerging applications as oil–water separation membranes,lithium-ionbattery separators,self-cleaning layers,and anticorrosion coatings are demonstrated.Finally,we emphasize on future perspectives regarding the development of superwetting porous membranes for practical applications.展开更多
Porous polyvinylidene fluoride(PVDF)membranes blended with LiCl are prepared through the phase inversion method to obtain a good support layer for air dehumidification.The hydrophilicity of the resulting membrane is...Porous polyvinylidene fluoride(PVDF)membranes blended with LiCl are prepared through the phase inversion method to obtain a good support layer for air dehumidification.The hydrophilicity of the resulting membrane is evaluated by water contact angle measurements and vapor adsorption tests.The moisture permeation performance of the membrane is measured by permeation tests in terms of total mass transfer coefficients and moisture permeability rates.It is found that water contact angles and water vapor adsorption capacities increase with the increasing LiCl content in the casting solution.As the LiCl content increases,the total mass transfer coefficient increases slightly at a low LiCl content(below 2.5%)and then improves greatly at a high LiCl content(above 2.5%),whereas the moisture permeation rate increases.The results demonstrate that LiCl can remarkably improve the hydrophilicity of PVDF membranes,and then greatly enhance moisture permeation performance.展开更多
Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi...Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.展开更多
A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charg...A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charges that endow the membrane with a high rejection and an excellent anti-fouling ability for target organic molecule and asymmetric structure that affords a high conductivity for vanadiummethylene blue flow battery(V-MB FB). The morphologies and thickness of separating layer in particular of the porous PBI can be well adjusted by simply altering the polymer concentration in the cast solution and further afford the membrane with a controllable property in terms of both ion selectivity and ion conductivity. As a result, a V-MB FB assembled with a porous PBI membrane delivers a coulombic efficiency(CE) of 99.45% and an energy efficiency(EE) of 86.10% at a current density of 40 mA cm^(-2), which is 12% higher than that afforded by a Nafion 212 membrane. Most importantly, the V-MB FB demonstrates a methylene blue(MB) utilization of 97.55% at a theoretical capacity of 32.16 Ah L^(-1)(based on the concentration of MB in the electrolyte) because of the high ion conductivity of the membrane, which favors reducing the cost of a battery. The results suggest that the designed porous PBI membranes exhibit a very promising prospect for methylene blue-vanadium flow battery.展开更多
Polyelectrolyte porous membranes(PPMs)belong to the most interesting classes of materials,because the synergy of tunable pore sizes and charge nature of polyelectrolyte endow them with wide-ranging practical applicati...Polyelectrolyte porous membranes(PPMs)belong to the most interesting classes of materials,because the synergy of tunable pore sizes and charge nature of polyelectrolyte endow them with wide-ranging practical applications.However,owing to the water solu-bility and ionic nature of the polyelectrolytes,traditional polyelectrolytes are difficult to use in scalable preparation of high-quality PPMs through the well-developed industrial methods.Poly(ionic liquid)s(PIL)are a subclass of functional polyelectrolytes bearing ionic liquid groups in their repeating unites,inheriting the advantages of ionic liquids(ILs)and macromolecular architecture features.In recent years,along with rapid development of PIL materials chemistry,considerable and significant developments involving the novel preparation methods,and structure-property-function relationships of PPMs have been made.In this review,we highlight the latest discovery and proceedings of PPMs,particularly the advancements in how to tailor structures and properties of PPMs by ra-tional structure design of PILs.The formation mechanisms of various PPMs were also discussed in detail from the viewpoint of PILs molecular structures.A future perspective of the challenges and promising potential of PPMs is cast on the basis of these achieve-ments.We expect that these analyses and deductions will be useful for the design of useful PPMs and serve as a source of inspira-tion for the design of future multifunctional PPMs.展开更多
The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by ...The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by a simple method. The resulting device exhibited excellent electrocatalytic activities toward the oxygen reduction reaction. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements demonstrated that the porous morphology and uniformly dispersed Fe;C nanoparticles of the PCCM play an important role in the oxygen reduction reaction. A linear response range from 2mmol/L up to 110 mmol/L and a detection limit of 1.4 mmol/L was obtained with this sensor. The repeatability of the proposed sensor,evaluated in terms of relative standard deviation, was 3.0%. The successful fabrication of PCCM/GC electrode may promote the development of new porous carbon oxygen reduction reaction material for the oxygen reduction sensor.展开更多
Immobilization of enzymes onto carriers is a rapidly growing research area aimed at increasing the stability,reusability and enzymolysis efficiency of free enzymes.In this work,the role of phaseseparation and a pH-res...Immobilization of enzymes onto carriers is a rapidly growing research area aimed at increasing the stability,reusability and enzymolysis efficiency of free enzymes.In this work,the role of phaseseparation and a pH-responsive"hairy"brush,which greatly affected the topography of porous polymer membrane enzyme reactors(PMER),was explored.The porous polymer membrane was fabricated by phase-separation of poly(styrene-co-maleic anhydride-acrylic acid)and poly(styrene-ethylene glycol).Notably,the topography and pores size of the PMER could be controlled by phase-separation and a pHresponsive"hairy"brush.For evaluating the enzymolysis efficiency of D-amino acid oxidase(DAAO)immobilized carrier(DAAO@PMER),a chiral ligand exchange capillary electrophoresis method was developed with D-methionine as the substrate.The DAAO@PMER showed good reusability and stability after five continuous runs.Notably,comparing with free DAAO in solution,the DAAO@PMER exhibited a17.7-folds increase in catalytic velocity,which was attributed to its tailorable topography and pHresponsive property.The poly(acrylic acid)moiety of poly(styrene-co-maleic anhydride-acrylic acid)as the pH-responsive"hairy"brush generated topography changing domains upon adjusting the buffer pH,which enable the enzymolysis efficiency of DAAO@PMER to be tuned based upon the well-defined architectures of the PMER.This approach demonstrated that the topographical changes formed by phaseseparation and the pH-responsive"hairy"brush indeed made the proposed porous polymer membrane as suitable supports for enzyme immobilization and fitting for enzymolysis applications,achieving high catalytic performance.展开更多
A hybrid system combined with a non-contact membrane and bubbling absorption is proposed to capture CO_(2) from flue gas.The non-contact way of membrane and liquid absorbent effectively avoids the reduction of gas dif...A hybrid system combined with a non-contact membrane and bubbling absorption is proposed to capture CO_(2) from flue gas.The non-contact way of membrane and liquid absorbent effectively avoids the reduction of gas diffusion flux through the membrane.High-porosity ceramic membranes in hybrid systems are used for gas-solid separation in fuel gas treatment.Due to the high content of H_(2)O and cement dust in the flue gas of the cement plant,the membrane is hydrophobically modified by polytetrafluoroethylene(PTFE)to improve its anti-water,anti-fouling,and self-cleaning performances.The results show that the diffusion flux of CO_(2) through the membrane is still higher than 7.0×10^(−3) mol/m^(2)s(20%CO_(2) concentration)even under the influence of water and cement dust.In addition,slaked lime selected as the absorbent is cheap and the product after bubbling absorption is nano-scale light calcium carbonate.To sum up,the hybrid system combining non-contact membrane and bubbling absorption is expected to be used to capture carbon dioxide from the flue gas of the cement plant.展开更多
基金supported by the National Key R&D Program of China(No.2022YFB3805302)the National Natural Science Foundation of China(No.22379141)+2 种基金CAS Strategic Leading Science&Technology Program(A)(No.XDA0400201)Dalian Science and Technology Star Program(No.2022RQ014)Youth Innovation Promotion Association CAS(No.2022184).
文摘The membrane,one of the key components of flow batteries,ideally has high selectivity,conductivity,and stability.However,porous membranes prepared by conventional non-solvent-induced phase separation(NIPS)commonly suffer from low selectivity and poor mechanical stability.Here,we used rigid naphthalene-containing polybenzimidazole(NPBI)to prepare a porous membrane with unique egg-shaped pores by adjusting solvent/non-solvent exchange in NIPS.The dense pores with a size of 3.6Åarranged dispersedly between egg-shaped pores.The rigid NPBI and 3.6-Åsmall pores enabled the membrane high mechanical strength.The thickness was thus decreased to 1.4μm,which exhibited an ultrahigh tensile strength of 463.54 MPa.The dense pores were also smaller than hydrated vanadium ions,achieving a low permeability of 2.28×10^(-7)cm^(2)/h,indicating high selectivity.This is the first time to prepare such a highly selective and mechanically stable ultrathin porous membrane by NIPS.Importantly,the ion-transport pathways in the 1.4μm membrane were shortened,decreasing the area resistance to as low as 0.015Ωcm 2.Demonstrated in a vanadium flow battery,its coulombic efficiency was 98.57%and energy efficiency reached 81.72%at 200 mA/cm 2.This study proposes an effective strategy to prepare highperformance ultrathin porous membranes for flow batteries.
基金supported by the 863 program(No.2006AA03Z233)973 program(No.2009CB623402) of China
文摘High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.
基金Supported by the 863 Hi-Tech. Research and Development Program of China (No. 2002AA649280, No. 2002AA304030),National Natural Science Foundation of China (No. 20206002), Beijing NOVA program (H013610250112), University Doctor Science Foundation of China
文摘Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous membrane has significant effect on mass transfer process. The permeabilities of five kinds of gas, He, N2, O2, CO2 and water vapor, across six polytetrafluoroethylene(PTFE) flat membranes were tested experimentally. Results indicated that the greater the membrane mean pore size and the wider the pore size distribution are, the higher the gas permeability. A gas permeation model, including the effects of membrane structure parameter and gas properties, was established. A comprehensive characteristic parameter (including porosity, thickness and tortuosity) was found more effective to express the influence of membrane structure in gas permeation process. The predicted permeation coefficients were in good agreement with experimental data.
基金supported by the National Natural Science Foundation of China(Grants 91642203,31627804,31661143044,and 31570942)the Frontier Science Key Project of Chinese Science Academy(Grant QYZDJ-SSW-JSC018)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant XDB22040101).
文摘Organs-on-chips composed of a porous membrane-separated,double-layered channels are used widely in elucidating the effects of cell co-culture and flow shear on biological functions.While the diversity of channel geometry and membrane permeability is applied,their quantitative correlation with flow features is still unclear.Immersed boundary methods(IBM)simulations and theoretical modelling were performed in this study.Numerical simulations showed that channel length,height and membrane permeability jointly regulated the flow features of flux,penetration velocity and wall shear stress(WSS).Increase of channel length,lower channel height or membrane permeability monotonically reduced the flow flux,velocity and WSS in upper channel before reaching a plateau.While the flow flux in lower channel monotonically increased with the increase of each factor,the WSS surprisingly exhibited a biphasic pattern with first increase and then decrease with increase of lower channel height.Moreover,the transition threshold of maximum WSS was sensitive to the channel length and membrane permeability.Theoretical modeling,integrating the transmembrane pressure difference and inlet flow flux with chip geometry and membrane permeability,was in good agreement with IBM simulations.These analyses provided theoretical bases for optimizing flow-specified chip design and evaluating flow microenvironments of in vivo tissue.
基金supported by the National Basic Research Program of China(No2009CB623402)China Postdoctoral Science Foundation(No20080430220)
文摘Hydrophilic surface modification of poly(phthalazinone ether sulfone ketone)(PPESK) porous membranes was achieved via surface-initiated atom transfer radical polymerization(ATRP) in aqueous medium.Prior to ATRP.chloromethyl groups were introduced onto PPESK main chains by chloromethylation.Chloromethvlated PPESK(CMPPESK) was fabricated into porous membrane through phase inversion technique.Hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate)(P(PEGMA)) brushes were grafted from CMPPESK membrane ...
基金supported by the National Natural Science Foundation of China (No. 20676016, 21076024)the State Key Laboratory of Chemical Resource Engineering
文摘Catalytic bubble-free hydrogenation reduction of azo dye by porous membranes loaded with palladium (Pd) nanoparticles was studied for the first time. The effects of Pd loading, dye concentration and reuse repetitions of membranes were investigated. In reduction, the dye concentration decreased whereas the pH rose gradually. An optimal Pd loading was found. The catalytic membranes were able to be reused more than 3 times.
基金This work was supported by the National Natural Science Foundation of China(No.21576250)the Key Research Project of Shandong Province(No.2018CXGC 1003),and the Young Taishan Scholars Program of Shandong Province.
文摘This study was performed to investigate the availability of forward osmosis(FO)for microalgae harvesting using sulfonated polyethersulfone(SPES)/PES porous membranes.In FO process,porous membranes(<25.0 L m^−2 h^−1)exhibited more superior water flux than TFC FO membranes(<2.6 L m^−2 h^−1).Furthermore,the incorporation of SPES has been demonstrated to enhance membrane performance.The effects of SPES content on pore structure and separation performance were investigated.Compared with pure PES porous membranes,porous membranes with 40%SPES yielded an improved hydrophilicity and greater porosity.It exhibited two times higher water fluxes than the pure PES porous membrane.For microalgae harvesting,AL-FS mode(active layer facing the feed solution)was more favourable than AL-DS mode(active layer facing the draw solution)because less deposited microalgae on the active layer mitigate the membrane biofouling.FO operation combined with SPES/PES porous membranes is conducive to preserving microalgae cell integrity under the mild condition.In addition,FO membrane can be cleaned by a simple water rinse.Potential implications were highlighted as a sustainable method for microalgae harvesting because of no pressure input and less chemical cleaning demand.
文摘Oblique surface waves incident on a fixed vertical porous membrane of various geometric configurations is analyzed here.The mixed boundary value problem is modified into easily resolvable problems by using a connection.These problems are reduced to that of solving a couple of integral equations.These integral equations are solved by a one-term or a two-term Galerkin method.The method involves a basis functions consists of simple polynomials multiplied with a suitable weight functions induced by the barrier.Coefficient of reflection and total wave energy are numerically evaluated and analyzed against various wave parameters.Enhanced reflection is found for all the four barrier configurations.
基金This work was supported by the National Natural Science Foundation of China (No. 20023003 and 20128004).
文摘The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.
基金supported by the Ministry of Education Singapore under the Academic Research Funds(RT12/19 and MOE-MOET2EP10120-0003)the Singapore National Research Foundation Investigatorship(NRF-NRFI2018-03)。
文摘Catalytic CO_(2)conversion has witnessed a dynamic growth in recent decades.Various materials have been applied to reduce CO_(2)into fuels and value-added chemicals.Normally,the powder-based catalysts cannot be directly utilized for CO_(2)conversion.Much attention was paid to the study of catalytic membranes in order to overcome this issue,since it is convenient for catalytic membranes to be employed in devices for practical applications.In this review,the recent research development of porous catalytic membranes for CO_(2)conversion is summarized.The preparations of representative porous catalytic membranes and their CO_(2)conversion methods,including electrocatalysis,photocatalysis,photoelectrocatalysis,thermalcatalysis and biocatalysis,are discussed in detail.This review is expected to provide deep understanding on the utilization of porous catalytic membranes for CO_(2)conversion.
基金supported by Federal Ministry of Food,Agriculture and Consumer Protection,Agency for Renewable Resources in Germany(No.22010502)
文摘Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.
基金supported by the Nankai University,the National Science Foundation of China(grant no.21875119)the Natural Science Foundation of Tianjin(19JCYBJC17500).
文摘The development of strategies for producing welldefined chiral porous membranes for the rapid and efficient enantioseparation of racemic mixtures remains a great challenge.Herein,we introduce an innovative,simple,and easily scalable synthetic strategy to manufacture chiral porous polymer membranes(CPPMs)bearing chiral NH groups by crosslinking single-component chiral poly(ionic liquid)s(PILs)with water molecules via hydrogen(H)-bonding.
基金support from the National Natural Science Foundation of China(grant nos.21621001 and 21835002)the 111 Project(no.B17020)+2 种基金the Jilin Province/Jilin University Co-construction Project-FundsNew Materials(no.SXGJSF2017-3)supporting this work.
文摘Porous materials have become a burgeoning research interest in materials science because of their intrinsic porous characteristics,versatile chemical compositions,and abundant functionalities.Recently,inspired by natural superwetting surfaces originating from the cooperation of surface energy and surface geometry,porous membranes with special wettabilities are finding emerging opportunities associated with a wide variety of environmental and energy-related applications.This review will present an overview of the state-of-the-art research on the designed fabrications and applications of superwetting porous membranes based on zeolites,metal–organic frameworks(MOFs),porous organic materials(POMs),and mesoporous materials.General synthetic strategies for the fabrication of porous membranes(e.g.,hydrothermal/solvothermal crystallization,interfacial polymerization,electrospinning,etc.),and principles for tuning the wettability of porous membranes through surface energy modulation are introduced.Furthermore,their emerging applications as oil–water separation membranes,lithium-ionbattery separators,self-cleaning layers,and anticorrosion coatings are demonstrated.Finally,we emphasize on future perspectives regarding the development of superwetting porous membranes for practical applications.
基金The National Natural Science Foundation of China(No.50676034)the National High Technology Research and Development Program of China(863 Program)(No.2008AA05Z206)
文摘Porous polyvinylidene fluoride(PVDF)membranes blended with LiCl are prepared through the phase inversion method to obtain a good support layer for air dehumidification.The hydrophilicity of the resulting membrane is evaluated by water contact angle measurements and vapor adsorption tests.The moisture permeation performance of the membrane is measured by permeation tests in terms of total mass transfer coefficients and moisture permeability rates.It is found that water contact angles and water vapor adsorption capacities increase with the increasing LiCl content in the casting solution.As the LiCl content increases,the total mass transfer coefficient increases slightly at a low LiCl content(below 2.5%)and then improves greatly at a high LiCl content(above 2.5%),whereas the moisture permeation rate increases.The results demonstrate that LiCl can remarkably improve the hydrophilicity of PVDF membranes,and then greatly enhance moisture permeation performance.
基金Supported by the National Natural Science Foundation of China (20990222, 21106061), the National Basic Research Program of China (2009CB623406), the National Key Science and Technology Program of China (2011BAE07B05) and the Natural Science Foundation of Jiangsu Province, China (BK2010549, BK2009021).
文摘Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.
基金financial support from NSFC (22075121)the Youth Innovation Promotion Association CAS (2019182)+1 种基金the Dalian Science and Technology Innovation Project (2020JJ26GX031)the DNL Cooperation Found,CAS(DNL201910)。
文摘A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charges that endow the membrane with a high rejection and an excellent anti-fouling ability for target organic molecule and asymmetric structure that affords a high conductivity for vanadiummethylene blue flow battery(V-MB FB). The morphologies and thickness of separating layer in particular of the porous PBI can be well adjusted by simply altering the polymer concentration in the cast solution and further afford the membrane with a controllable property in terms of both ion selectivity and ion conductivity. As a result, a V-MB FB assembled with a porous PBI membrane delivers a coulombic efficiency(CE) of 99.45% and an energy efficiency(EE) of 86.10% at a current density of 40 mA cm^(-2), which is 12% higher than that afforded by a Nafion 212 membrane. Most importantly, the V-MB FB demonstrates a methylene blue(MB) utilization of 97.55% at a theoretical capacity of 32.16 Ah L^(-1)(based on the concentration of MB in the electrolyte) because of the high ion conductivity of the membrane, which favors reducing the cost of a battery. The results suggest that the designed porous PBI membranes exhibit a very promising prospect for methylene blue-vanadium flow battery.
基金We greatly acknowledge the financial supports by the National Natural Science Foundation of China(Grant No.21875119)the Natural Science Foundation of Tianjin City(Grant Nos.19JCYBJC17500,21JCZDJC00250)the National Programfor Support of Top-notch Young Professionals。
文摘Polyelectrolyte porous membranes(PPMs)belong to the most interesting classes of materials,because the synergy of tunable pore sizes and charge nature of polyelectrolyte endow them with wide-ranging practical applications.However,owing to the water solu-bility and ionic nature of the polyelectrolytes,traditional polyelectrolytes are difficult to use in scalable preparation of high-quality PPMs through the well-developed industrial methods.Poly(ionic liquid)s(PIL)are a subclass of functional polyelectrolytes bearing ionic liquid groups in their repeating unites,inheriting the advantages of ionic liquids(ILs)and macromolecular architecture features.In recent years,along with rapid development of PIL materials chemistry,considerable and significant developments involving the novel preparation methods,and structure-property-function relationships of PPMs have been made.In this review,we highlight the latest discovery and proceedings of PPMs,particularly the advancements in how to tailor structures and properties of PPMs by ra-tional structure design of PILs.The formation mechanisms of various PPMs were also discussed in detail from the viewpoint of PILs molecular structures.A future perspective of the challenges and promising potential of PPMs is cast on the basis of these achieve-ments.We expect that these analyses and deductions will be useful for the design of useful PPMs and serve as a source of inspira-tion for the design of future multifunctional PPMs.
基金the National Natural Science Foundation of China (No.21273097)the project from the State Key Laboratory of Electroanalytical Chemistry (No.2013)the Science Foundation of Jilin Province (No.20130204003GX)
文摘The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by a simple method. The resulting device exhibited excellent electrocatalytic activities toward the oxygen reduction reaction. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements demonstrated that the porous morphology and uniformly dispersed Fe;C nanoparticles of the PCCM play an important role in the oxygen reduction reaction. A linear response range from 2mmol/L up to 110 mmol/L and a detection limit of 1.4 mmol/L was obtained with this sensor. The repeatability of the proposed sensor,evaluated in terms of relative standard deviation, was 3.0%. The successful fabrication of PCCM/GC electrode may promote the development of new porous carbon oxygen reduction reaction material for the oxygen reduction sensor.
基金the financial support from the National Natural Science Foundation of China(Nos.21874138,22074148,21727809,21635008)。
文摘Immobilization of enzymes onto carriers is a rapidly growing research area aimed at increasing the stability,reusability and enzymolysis efficiency of free enzymes.In this work,the role of phaseseparation and a pH-responsive"hairy"brush,which greatly affected the topography of porous polymer membrane enzyme reactors(PMER),was explored.The porous polymer membrane was fabricated by phase-separation of poly(styrene-co-maleic anhydride-acrylic acid)and poly(styrene-ethylene glycol).Notably,the topography and pores size of the PMER could be controlled by phase-separation and a pHresponsive"hairy"brush.For evaluating the enzymolysis efficiency of D-amino acid oxidase(DAAO)immobilized carrier(DAAO@PMER),a chiral ligand exchange capillary electrophoresis method was developed with D-methionine as the substrate.The DAAO@PMER showed good reusability and stability after five continuous runs.Notably,comparing with free DAAO in solution,the DAAO@PMER exhibited a17.7-folds increase in catalytic velocity,which was attributed to its tailorable topography and pHresponsive property.The poly(acrylic acid)moiety of poly(styrene-co-maleic anhydride-acrylic acid)as the pH-responsive"hairy"brush generated topography changing domains upon adjusting the buffer pH,which enable the enzymolysis efficiency of DAAO@PMER to be tuned based upon the well-defined architectures of the PMER.This approach demonstrated that the topographical changes formed by phaseseparation and the pH-responsive"hairy"brush indeed made the proposed porous polymer membrane as suitable supports for enzyme immobilization and fitting for enzymolysis applications,achieving high catalytic performance.
文摘A hybrid system combined with a non-contact membrane and bubbling absorption is proposed to capture CO_(2) from flue gas.The non-contact way of membrane and liquid absorbent effectively avoids the reduction of gas diffusion flux through the membrane.High-porosity ceramic membranes in hybrid systems are used for gas-solid separation in fuel gas treatment.Due to the high content of H_(2)O and cement dust in the flue gas of the cement plant,the membrane is hydrophobically modified by polytetrafluoroethylene(PTFE)to improve its anti-water,anti-fouling,and self-cleaning performances.The results show that the diffusion flux of CO_(2) through the membrane is still higher than 7.0×10^(−3) mol/m^(2)s(20%CO_(2) concentration)even under the influence of water and cement dust.In addition,slaked lime selected as the absorbent is cheap and the product after bubbling absorption is nano-scale light calcium carbonate.To sum up,the hybrid system combining non-contact membrane and bubbling absorption is expected to be used to capture carbon dioxide from the flue gas of the cement plant.