In this work, a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxyme...In this work, a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxymethylfurfural(EMF) in a renewable mixed solvent system consisting of ethanol and tetrahydrofuran(THF). The influence of –SO3H content on the acidity as well as on the catalytic activity of the porous coordination polymers in EMF production was also studied. High EMF yields of 67.7% and 54.2% could be successively obtained from fructose and inulin in the presence of MIL-101-SO;H(100) at 130 °C for 15 h.The catalyst could be reused for five times without significant loss of its activity and the recovery process was facile and simple. This work provides a new platform by application of porous coordination polymers(PCPs) for the production of the potential liquid fuel molecule EMF from biomass in a sustainable solvent system.展开更多
Porous coordination polymers(PCPs)or metal-organic frameworks(MOFs)hold promise as photocatalyst candidates for the remediation of toxic metal ions and organic pollutants.However,they often exhibit inferior removal an...Porous coordination polymers(PCPs)or metal-organic frameworks(MOFs)hold promise as photocatalyst candidates for the remediation of toxic metal ions and organic pollutants.However,they often exhibit inferior removal and catalytic efficiency due to the rapid recombination of photoexcited electrons and holes.This review presents synthetic strategies for MOFs and MOFbased composites and elucidates the underlying mechanisms for the photocatalytic reduction of metal ions and degradation of organic pollutants.Furthermore,this review highlights the opportunities,challenges,and future perspectives of MOFs and MOF composite photocatalysts,aiming to design more innovative MOF-based photocatalytic systems using green and sustainable strategies.It is anticipated that this review will serve as a guide for the systematic development and optimization of highly efficient MOF-based photocatalysts.展开更多
During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chem...During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chemical functions.This article provides a short review of recent advances in the design and constructions of porous coordination polymers based on three planar rigid ligands,including imidazole-4,5-dicarboxlate(H3IDC),1H-tetrazole(HTz),as well as 1H-tetrazole-5-carboxylate(H2Tzc).Their preparations,crystal structures,and desirable properties have been reviewed.展开更多
Recently,research of crystalline-state transformation involving the removal/inclusion of vip molecules in porous coordination polymers(PCPs) was underway.Crystalline-state transformation,especially,single-crystal to...Recently,research of crystalline-state transformation involving the removal/inclusion of vip molecules in porous coordination polymers(PCPs) was underway.Crystalline-state transformation,especially,single-crystal to single-crystal(SC-SC) transformation as new method for the direct observation of host-vip chemistry,can reveal the intrinsic relevance and interaction between the framework and vip molecules.This review describes our work concerning PCPs and recent investigations of others,within the last four years,from the viewpoint of crystalline-state transformations of PCPs on vip removal or inclusion processes.Ligand substitution reaction and postsynthetic modification of PCPs in SC-SC fashion which were distinguished from conventional crystalline-state transformation triggered by vip removal or exchange were highlighted in this review.The research status of crystalline-state transformation in China was briefly introduced as well.Series of structure analysis techniques including single-crystal X-ray diffraction,powder X-ray diffraction,neutron diffraction,inelastic neutron scattering as well as the application of synchrotron radiation light source will inevitably promote the advance of study of crystalline-state transformation.And as a hotspot,deep investigations of crystalline-state transformation also help us to overcome the challenge of achieving multifunction and the correlation among them,such as sorption,magnetism,optical or electrical properties simultaneously in PCPs and contribute to design stimulate-oriented porous intelligent materials in the future.展开更多
A novel porous coordination polymer,iron naphthalenedicarboxylate Fe(OH)(1,4-NDC)·2H2O is hydrothermally synthesized by the reaction of FeSO4·7H2O and 1,4-naphthalenedicarboxylic acid(1,4-H2NDC) at 150...A novel porous coordination polymer,iron naphthalenedicarboxylate Fe(OH)(1,4-NDC)·2H2O is hydrothermally synthesized by the reaction of FeSO4·7H2O and 1,4-naphthalenedicarboxylic acid(1,4-H2NDC) at 150℃.The compound crystallizes in a tetragonal space group P42/nmc:a=2.1447(4) nm,c=0.68849(14) nm,V=3.1669(11) nm3,Z=8,R=0.0845,wR=0.1829.The crystal structure exhibits a three-dimensional framework which is composed of infinite chains of corner-sharing octahedral Fe(OH)2O4 with 1,4-NDC ligands forming two types of channels with square-shaped cross-sections.The large channels present a cross-section of 0.76 nm×0.76 nm,while the small channels are about 0.30 nm×0.30 nm.No structural transformation occurs after removing the vip water molecules,while a robust structure generates with permanent porosity.The adsorption measurements show that the anhydrous sample of the compound can adsorb CO2 into its pores.The adsorption isotherms for methanol,acetone,tetrahydrofuran and benzene are also measured.展开更多
Although large amounts of engineered nanomaterials have been used for the arsenic removal, today there still remains several serious impediments to its further application, including consumption of expensive and pure ...Although large amounts of engineered nanomaterials have been used for the arsenic removal, today there still remains several serious impediments to its further application, including consumption of expensive and pure salts, and only application for the removal of inorganic arsenic. In this work, we developed an eco-economic and facile electrochemical method to synthesize iron porous coordination polymers (FePCPs) for the simultaneous removal of inorganic and organic arsenic from natural water.展开更多
Mixed matrix membrane used to selective removal of CO2 was considered as an efficient solution to energy and environmental sustainability. In this study, a MMM that consists of amide functionalized porous coordination...Mixed matrix membrane used to selective removal of CO2 was considered as an efficient solution to energy and environmental sustainability. In this study, a MMM that consists of amide functionalized porous coordination polymer filler(MIL-53-NH2) was successfully prepared, which sharply promotes the CO2/N2 selectivity from 44(neat polymeric membrane) to 75. Remarkably, the positive effect of amide group and nanochannel of MIL-53-NH2 filler was illustrated by decreased selectivity of the MMM with formic acid modified MIL-53-NH2 filler(MIL-53-NHCOH).展开更多
Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce funct...Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce functional groups at specificpositions within pores and crystals.This review explores two prominent strategiesfor achieving the positional functionalization of MOFs:post-synthetic ligand exchange(PSE)and MOF-on-MOF.In PSE,the existing ligands within solid-stateMOFs can be selectively replaced by the desired functional groups in solutionthrough ligand dynamics.This invasive functionalization provides a flexibleapproach to fine-tuning the surface of the MOFs with the target functionality.Conversely,MOF-on-MOF strategies are additive methodologies involving thecontrolled growth of one MOF layer onto another.The functionality of the core andshell(or surface)can be independently controlled.This review critically examinesthe examples,strengths,limitations,and applications of these strategies,emphasizingtheir significance in advancing the field of MOF functionalization andpaving the way for tailored multifunctional materials with precise and specificproperties.展开更多
Designing efficient proton-conductive materials is crucial in fuel cells.Yet,it remains a substantial challenge because of the issues in proton mobility,proton-carrier amount,and orientation of proton host materials.H...Designing efficient proton-conductive materials is crucial in fuel cells.Yet,it remains a substantial challenge because of the issues in proton mobility,proton-carrier amount,and orientation of proton host materials.Herein,we report an in-situ protonation strategy to produce a locally flexible porous coordination polymer(PCP)to enhance the proton-carrier loading and proton conductivity.The local dipole flipping of the ligand allows effective proton exchange with low activation energy,promoting interpore proton transport through the pore apertures and pore walls.The protonation induces substantial charges to the frameworks and enhances the interaction with proton carriers,thereby increasing the loading of the proton carriers.By this design strategy,the resulting PCP exhibits enhanced phosphoric acid loading and extraordinary proton conductivities under both aqueous and anhydrous conditions compared to its isoreticular analog that features rigidity without proton-exchange capability.Our work provides a new avenue for designing proton-conductive materials that combine structural dynamics with performance merits.展开更多
Organic radicals feature versatile unpaired electrons key for photoelectronic and biomedical applications but remain difficult to access in stable concentrated forms.We disclose easy generation of stable,concentrated ...Organic radicals feature versatile unpaired electrons key for photoelectronic and biomedical applications but remain difficult to access in stable concentrated forms.We disclose easy generation of stable,concentrated radicals from various alkynyl phenyl motifs,including 1)sulfur-functionalized alkyne-rich organic linkers in crystalline frameworks;2)the powders of these molecules alone;3)simple diethynylbenzenes.For Zr-based framework,the generation of radical-rich crystalline framework was achieved by thermal annealing in the range of 300-450℃.For terminal alkynes,electron paramagnetic resonance signals(EPR,indicative of free radicals)arise after air exposure or mild heating(e.g,70℃).Further heating(e.g.,150℃for 3 h)raises the radical concentrations up to 3.30 mol kg^(-1).For more stable internal alkynes,transformations into porous radical solids can also be triggered,albeit at higher temperatures(e.g.,250-500℃).The resulted radical-containing solids are porous,stable to air as well as heat(up to 300-450℃)and exhibit photothermal conversion and solar-driven water evaporation capacity.The formation of radicals can be ascribed to extensive alkyne cycliza-tions,forming defects,dangling bonds and the associated radicals stabilized by polycyclicπ-systems.展开更多
Main observation and conclusion Magnifying the controllable directional motions of molecular machines to the macroscopic levels is a significant topic for chemists.Flexible metal–organic frameworks with long-range or...Main observation and conclusion Magnifying the controllable directional motions of molecular machines to the macroscopic levels is a significant topic for chemists.Flexible metal–organic frameworks with long-range order and responsive structural transformation under external stimuli may be an appropriate platform for achieving the target.By taking advantage of the single-crystal to single-crystal manner of soft porous crystals,we utilize single-crystal X-ray diffraction to directly observe the dynamic structural inversion of a new three-fold interpenetrated pillared-layer metal-organic framework[Co(edba)(bpy)](MCF-83,H2edba=4,4’-(ethyne-1,2-diyl)dibenzoic acid,bpy=4,4’-bipyridine).More interestingly,the dynamic inversions of the pillars and layers are selectively vip-controllable and independent,allowing precise control of the directional shape changes,which is the key of constructing intelligent materials to accomplish a complex task.The mechanism is further studied by combining the X-ray diffraction analyses,sorption measurements and molecular simulations.展开更多
基金financially supported by the Natural Science Foundation of China(no.21576059)the Key Technologies R&D Program(no.2011BAE06B02)+1 种基金the International Science&Technology Cooperation Program of China(2010DFB60840)the Science and Technology Project of Guizhou Province(nos.[2012]6012 and[2011]3016)
文摘In this work, a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxymethylfurfural(EMF) in a renewable mixed solvent system consisting of ethanol and tetrahydrofuran(THF). The influence of –SO3H content on the acidity as well as on the catalytic activity of the porous coordination polymers in EMF production was also studied. High EMF yields of 67.7% and 54.2% could be successively obtained from fructose and inulin in the presence of MIL-101-SO;H(100) at 130 °C for 15 h.The catalyst could be reused for five times without significant loss of its activity and the recovery process was facile and simple. This work provides a new platform by application of porous coordination polymers(PCPs) for the production of the potential liquid fuel molecule EMF from biomass in a sustainable solvent system.
基金supported by the National Natural Science Foundation of China(NSFC-22305212,52371240,U1904215)the Changjiang Scholars Program of the Ministry of Education(Q2018270).
文摘Porous coordination polymers(PCPs)or metal-organic frameworks(MOFs)hold promise as photocatalyst candidates for the remediation of toxic metal ions and organic pollutants.However,they often exhibit inferior removal and catalytic efficiency due to the rapid recombination of photoexcited electrons and holes.This review presents synthetic strategies for MOFs and MOFbased composites and elucidates the underlying mechanisms for the photocatalytic reduction of metal ions and degradation of organic pollutants.Furthermore,this review highlights the opportunities,challenges,and future perspectives of MOFs and MOF composite photocatalysts,aiming to design more innovative MOF-based photocatalytic systems using green and sustainable strategies.It is anticipated that this review will serve as a guide for the systematic development and optimization of highly efficient MOF-based photocatalysts.
文摘During the last two decades,porous coordination polymers(PCPs),usually called as metal-organic frameworks(MOFs),have been developed rapidly due to their versatile structural diversities and potential physical and chemical functions.This article provides a short review of recent advances in the design and constructions of porous coordination polymers based on three planar rigid ligands,including imidazole-4,5-dicarboxlate(H3IDC),1H-tetrazole(HTz),as well as 1H-tetrazole-5-carboxylate(H2Tzc).Their preparations,crystal structures,and desirable properties have been reviewed.
基金supported by the National Natural Science Foundation of China(91022015 & 20871034)Guangxi Science Foundation of China (0832001Z)the Program for New Century Excellent Talents in University of the Ministry of Education of China and Guangxi Province (NCET-07-217,2006201)
文摘Recently,research of crystalline-state transformation involving the removal/inclusion of vip molecules in porous coordination polymers(PCPs) was underway.Crystalline-state transformation,especially,single-crystal to single-crystal(SC-SC) transformation as new method for the direct observation of host-vip chemistry,can reveal the intrinsic relevance and interaction between the framework and vip molecules.This review describes our work concerning PCPs and recent investigations of others,within the last four years,from the viewpoint of crystalline-state transformations of PCPs on vip removal or inclusion processes.Ligand substitution reaction and postsynthetic modification of PCPs in SC-SC fashion which were distinguished from conventional crystalline-state transformation triggered by vip removal or exchange were highlighted in this review.The research status of crystalline-state transformation in China was briefly introduced as well.Series of structure analysis techniques including single-crystal X-ray diffraction,powder X-ray diffraction,neutron diffraction,inelastic neutron scattering as well as the application of synchrotron radiation light source will inevitably promote the advance of study of crystalline-state transformation.And as a hotspot,deep investigations of crystalline-state transformation also help us to overcome the challenge of achieving multifunction and the correlation among them,such as sorption,magnetism,optical or electrical properties simultaneously in PCPs and contribute to design stimulate-oriented porous intelligent materials in the future.
基金The Natural Science Foundation of Jiangsu Province(No.BK2009262)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘A novel porous coordination polymer,iron naphthalenedicarboxylate Fe(OH)(1,4-NDC)·2H2O is hydrothermally synthesized by the reaction of FeSO4·7H2O and 1,4-naphthalenedicarboxylic acid(1,4-H2NDC) at 150℃.The compound crystallizes in a tetragonal space group P42/nmc:a=2.1447(4) nm,c=0.68849(14) nm,V=3.1669(11) nm3,Z=8,R=0.0845,wR=0.1829.The crystal structure exhibits a three-dimensional framework which is composed of infinite chains of corner-sharing octahedral Fe(OH)2O4 with 1,4-NDC ligands forming two types of channels with square-shaped cross-sections.The large channels present a cross-section of 0.76 nm×0.76 nm,while the small channels are about 0.30 nm×0.30 nm.No structural transformation occurs after removing the vip water molecules,while a robust structure generates with permanent porosity.The adsorption measurements show that the anhydrous sample of the compound can adsorb CO2 into its pores.The adsorption isotherms for methanol,acetone,tetrahydrofuran and benzene are also measured.
基金the National Natural Science Foundation of China (Nos. 21575092 and 21622508) for financial support
文摘Although large amounts of engineered nanomaterials have been used for the arsenic removal, today there still remains several serious impediments to its further application, including consumption of expensive and pure salts, and only application for the removal of inorganic arsenic. In this work, we developed an eco-economic and facile electrochemical method to synthesize iron porous coordination polymers (FePCPs) for the simultaneous removal of inorganic and organic arsenic from natural water.
基金financial support of the National Natural Science Foundation of China (No. 21671102)Natural Science Foundation of Jiangsu Province (No. BK20161538)+2 种基金Innovative Research Team Program by the Ministry of Education of China (No. IRT17R54)Six Talent Peaks Project in Jiangsu Province (No. JY-030)State Key Laboratory of Materials-Oriented Chemical Engineering (No. ZK201406)
文摘Mixed matrix membrane used to selective removal of CO2 was considered as an efficient solution to energy and environmental sustainability. In this study, a MMM that consists of amide functionalized porous coordination polymer filler(MIL-53-NH2) was successfully prepared, which sharply promotes the CO2/N2 selectivity from 44(neat polymeric membrane) to 75. Remarkably, the positive effect of amide group and nanochannel of MIL-53-NH2 filler was illustrated by decreased selectivity of the MMM with formic acid modified MIL-53-NH2 filler(MIL-53-NHCOH).
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2022R1A2C1009706).
文摘Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce functional groups at specificpositions within pores and crystals.This review explores two prominent strategiesfor achieving the positional functionalization of MOFs:post-synthetic ligand exchange(PSE)and MOF-on-MOF.In PSE,the existing ligands within solid-stateMOFs can be selectively replaced by the desired functional groups in solutionthrough ligand dynamics.This invasive functionalization provides a flexibleapproach to fine-tuning the surface of the MOFs with the target functionality.Conversely,MOF-on-MOF strategies are additive methodologies involving thecontrolled growth of one MOF layer onto another.The functionality of the core andshell(or surface)can be independently controlled.This review critically examinesthe examples,strengths,limitations,and applications of these strategies,emphasizingtheir significance in advancing the field of MOF functionalization andpaving the way for tailored multifunctional materials with precise and specificproperties.
基金supported by the National Natural Science Foundation of China(21975078)the Fundamental Research Funds for the Central Universitiesthe start-up foundation of Sichuan University。
文摘Designing efficient proton-conductive materials is crucial in fuel cells.Yet,it remains a substantial challenge because of the issues in proton mobility,proton-carrier amount,and orientation of proton host materials.Herein,we report an in-situ protonation strategy to produce a locally flexible porous coordination polymer(PCP)to enhance the proton-carrier loading and proton conductivity.The local dipole flipping of the ligand allows effective proton exchange with low activation energy,promoting interpore proton transport through the pore apertures and pore walls.The protonation induces substantial charges to the frameworks and enhances the interaction with proton carriers,thereby increasing the loading of the proton carriers.By this design strategy,the resulting PCP exhibits enhanced phosphoric acid loading and extraordinary proton conductivities under both aqueous and anhydrous conditions compared to its isoreticular analog that features rigidity without proton-exchange capability.Our work provides a new avenue for designing proton-conductive materials that combine structural dynamics with performance merits.
基金fundings by the National Natural Science Foundation of China(22371054,22301045)the Foundation of Basic and Applied Basic Research of Guangdong Province(2020B1515120024,2024A1515012801)+1 种基金Science and Technology Planning Project of Guangdong Province(2021A0505030066,2023A0505050164)Z.X.acknowledges a startup fund from A^(*)STAR(SC25/22-119116).
文摘Organic radicals feature versatile unpaired electrons key for photoelectronic and biomedical applications but remain difficult to access in stable concentrated forms.We disclose easy generation of stable,concentrated radicals from various alkynyl phenyl motifs,including 1)sulfur-functionalized alkyne-rich organic linkers in crystalline frameworks;2)the powders of these molecules alone;3)simple diethynylbenzenes.For Zr-based framework,the generation of radical-rich crystalline framework was achieved by thermal annealing in the range of 300-450℃.For terminal alkynes,electron paramagnetic resonance signals(EPR,indicative of free radicals)arise after air exposure or mild heating(e.g,70℃).Further heating(e.g.,150℃for 3 h)raises the radical concentrations up to 3.30 mol kg^(-1).For more stable internal alkynes,transformations into porous radical solids can also be triggered,albeit at higher temperatures(e.g.,250-500℃).The resulted radical-containing solids are porous,stable to air as well as heat(up to 300-450℃)and exhibit photothermal conversion and solar-driven water evaporation capacity.The formation of radicals can be ascribed to extensive alkyne cycliza-tions,forming defects,dangling bonds and the associated radicals stabilized by polycyclicπ-systems.
基金supported by NSFC(Nos.22090061,21731007,21821003&22001160)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01C161).
文摘Main observation and conclusion Magnifying the controllable directional motions of molecular machines to the macroscopic levels is a significant topic for chemists.Flexible metal–organic frameworks with long-range order and responsive structural transformation under external stimuli may be an appropriate platform for achieving the target.By taking advantage of the single-crystal to single-crystal manner of soft porous crystals,we utilize single-crystal X-ray diffraction to directly observe the dynamic structural inversion of a new three-fold interpenetrated pillared-layer metal-organic framework[Co(edba)(bpy)](MCF-83,H2edba=4,4’-(ethyne-1,2-diyl)dibenzoic acid,bpy=4,4’-bipyridine).More interestingly,the dynamic inversions of the pillars and layers are selectively vip-controllable and independent,allowing precise control of the directional shape changes,which is the key of constructing intelligent materials to accomplish a complex task.The mechanism is further studied by combining the X-ray diffraction analyses,sorption measurements and molecular simulations.