The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory. To ...The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory. To design more effective floating breakwaters, the transmission rate of waves propagating through the array is evaluated. Each cylinder in the array is partly made of porous materials. Specifically, it possesses a porous sidewall and an impermeable bottom. In addition, an inner porous plate is horizontally fixed inside the cylinders. It dissipates the wave more effectively and eliminates the sloshing phenomenon. The approach suggested by Kagemoto and Yue (1986) is adopted to solve the multiple-scatter problem, while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies, which efficiently saves computation time. Meanwhile, a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results. The draft of the cylinders, the location of the inner porous plate, and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.展开更多
In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 a...In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 and volume fraction 0, 0.2%, 0.5%, 2% and 5% that related to copper nanoparticles, and porous medium porosity of 0.5 and 0.9. Compared to the first geometry, the convective coefficient in the second geometry increases by 8.3%, 7% and 5.5% at Reynolds numbers of 100, 75 and 50, respectively. Comparison of the outlet temperatures for two heat fluxes of 300 and 1200 W/m^2 indicates a 2.5% temperature growth by a fourfold increase in the heat fluxes. Also, the higher Nusselt number is associated with the second geometry occurring at porosities of 0.9 and 0.5, respectively. In both geometries, the Nusselt number values at the porosity of 0.9 are higher, which is due to the increased nanofluid convection at higher porosities. The velocity of the nanofluid experiences a two-fold increase at the outlet compared to its inlet velocity in the first geometry and for both porosities. Similarly, a three-fold increase was achieved in the second geometry and for both porosities.展开更多
The scattering of water wave by an array of combined cylinders with solid interior columns and partially perforated exterior columns at the upper section of an outer wall is solved with a linear model for the pressure...The scattering of water wave by an array of combined cylinders with solid interior columns and partially perforated exterior columns at the upper section of an outer wall is solved with a linear model for the pressure difference between the two sides of a porous wall and the fluid velocity inside it. A semi-analytic linear solution is established by the eigenfunction expansion method for wave diffraction from the array of combined cylinders. Both numerical experiment and physical experiment are carried out to verity the theory. Also presented are some numerical examples to show the situation of wave force on the cylinders influenced by the effeet factor of porosity G, relative wave number ka and the ratio of water depth inside and outside the cylinders.展开更多
In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite el...In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite element method (SBFEM), which is a novel semi-analytical method with the advantages of combining the finite element method (FEM) with the boundary element method (BEM). The whole solution domain is divided into one unbounded sub-domain and one bounded sub-domain by the exterior cylinder. By weakening the governing differential equation in the circumferential direction, the SBFEM equations for both domains can be solved analytically in the radial direction. Only the boundary on the circumference of the exterior porous cylinder is discretized with curved surface finite elements. Meanwhile, by introducing a variable porous-effect parameter G, non-homogeneous materials caused by the complex configuration of the exterior cylinder are modeled without additional efforts. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. The effects of the wide range wave parameters and the structure configuration are examined. This parametric study will help determine the various hydrodynamic effects of the concentric porous cylindrical structure.展开更多
Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersio...Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersion of fluid-saturated porous cylinders. To address these three limitations and investigate the mechanisms of moduli dispersion, we present the analytical solutions of the poromechanical responses and the elastic moduli dispersion of a transversely isotropic, fluid-saturated, finite porous cylinder subjected to a forced deformation test. Through an example, we demonstrate the effects of loading frequency, boundary conditions, and material's anisotropy, dimension, and permeability on the responses of pore pressure,force, displacement, and dynamic elastic moduli of the cylinder. The specimen's responses are significantly influenced by the frequency of the applied load, resulting in a drained state at low frequencies and an undrained state at high frequencies. At high frequencies, the sample behaves identically for an open or a closed lateral boundary, and permeability has insignificant effects. The dynamic elastic moduli are mainly controlled by the loading frequency and the ratio of the sample's radius to its height. Lastly,we show excellent matches between the newly derived analytical solution and laboratory measurements on one clay and two shale samples from Mont Terri.展开更多
In the present study, 2-D large eddy simulations(LES) are conducted for flow past a porous circular array with a solid volume fraction(SVF) of 8.8%, 15.4% and 21.5%. Such simulations are relevant to understanding ...In the present study, 2-D large eddy simulations(LES) are conducted for flow past a porous circular array with a solid volume fraction(SVF) of 8.8%, 15.4% and 21.5%. Such simulations are relevant to understanding flow in natural streams and channels containing patches of emerged vegetation. In the simulations discussed in the paper, the porous cylinder of diameter D contains a variable number of identical solid circular cylinders(rigid plant stems) of diameter d= 0.048 D. Most of the simulations are conducted at a Reynolds number of 2 100 based on the diameter D and the velocity of the steady uniform incoming flow. Though in all cases wake billows are shed in the regions where the separated shear layers(SSLs) forming on the sides of the porous cylinder interact, the effect of these wake billows on the mean drag is different. While in the high SVF case(21.5%), the total drag force oscillates quasi-regularly in time, similar to the canonical case of a large solid cylinder, in the cases with a lower SVF the shedding of the wake billows takes place sufficiently far from the cylinder such that the unsteady component of the total drag force is negligible. The mean amplitude of the oscillations of the drag force on the individual cylinders is the largest in a streamwise band centered around the center of the porous cylinder, where the wake to wake interactions are the strongest. In all cases the maximum drag force on the individual cylinders is the largest for the cylinders directly exposed to the flow, but this force is always smaller than the one induced on a small isolated cylinder and the average magnitude of the force on the cylinders directly exposed to the flow decreases monotonically with the increase in the SVF. Predictions of the global drag coefficients, Strouhal numbers associated with the wake vortex shedding and individual forces on the cylinders in the array from the present LES are in very good agreement with those of 2-D direct numerical simulations conducted on finer meshes, which suggests LES is a better option to numerically investigate flow in channels containing canopy patches, given that LES is computationally much less expensive than DNS at high Reynolds number. To prove this point, the paper also discusses results of 2-D LES conducted at a much higher Reynolds number, where the near-wake flow is strongly turbulent. For the higher Reynolds number cases, where the influence of the turbulence model is important, the effect of the sub-grid scale model and the predictive capabilities of the unsteady Reynolds averaged Navier-Stokes(RANS) approach to predict flow past porous cylinders are discussed.展开更多
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China (Grant Nos. 40876049 and 31172446)+1 种基金the Science and Technology Department of Zhejiang Province(Grant No. 2008C12065-1)the Teaching Department of Zhejiang Province (Grant No. Z200803912)
文摘The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory. To design more effective floating breakwaters, the transmission rate of waves propagating through the array is evaluated. Each cylinder in the array is partly made of porous materials. Specifically, it possesses a porous sidewall and an impermeable bottom. In addition, an inner porous plate is horizontally fixed inside the cylinders. It dissipates the wave more effectively and eliminates the sloshing phenomenon. The approach suggested by Kagemoto and Yue (1986) is adopted to solve the multiple-scatter problem, while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies, which efficiently saves computation time. Meanwhile, a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results. The draft of the cylinders, the location of the inner porous plate, and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.
文摘In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 and volume fraction 0, 0.2%, 0.5%, 2% and 5% that related to copper nanoparticles, and porous medium porosity of 0.5 and 0.9. Compared to the first geometry, the convective coefficient in the second geometry increases by 8.3%, 7% and 5.5% at Reynolds numbers of 100, 75 and 50, respectively. Comparison of the outlet temperatures for two heat fluxes of 300 and 1200 W/m^2 indicates a 2.5% temperature growth by a fourfold increase in the heat fluxes. Also, the higher Nusselt number is associated with the second geometry occurring at porosities of 0.9 and 0.5, respectively. In both geometries, the Nusselt number values at the porosity of 0.9 are higher, which is due to the increased nanofluid convection at higher porosities. The velocity of the nanofluid experiences a two-fold increase at the outlet compared to its inlet velocity in the first geometry and for both porosities. Similarly, a three-fold increase was achieved in the second geometry and for both porosities.
文摘The scattering of water wave by an array of combined cylinders with solid interior columns and partially perforated exterior columns at the upper section of an outer wall is solved with a linear model for the pressure difference between the two sides of a porous wall and the fluid velocity inside it. A semi-analytic linear solution is established by the eigenfunction expansion method for wave diffraction from the array of combined cylinders. Both numerical experiment and physical experiment are carried out to verity the theory. Also presented are some numerical examples to show the situation of wave force on the cylinders influenced by the effeet factor of porosity G, relative wave number ka and the ratio of water depth inside and outside the cylinders.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.51138001)China-Germany joint research project(Grant No.GZ566)Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(Grant No.shlhse-2010-C-03)
文摘In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite element method (SBFEM), which is a novel semi-analytical method with the advantages of combining the finite element method (FEM) with the boundary element method (BEM). The whole solution domain is divided into one unbounded sub-domain and one bounded sub-domain by the exterior cylinder. By weakening the governing differential equation in the circumferential direction, the SBFEM equations for both domains can be solved analytically in the radial direction. Only the boundary on the circumference of the exterior porous cylinder is discretized with curved surface finite elements. Meanwhile, by introducing a variable porous-effect parameter G, non-homogeneous materials caused by the complex configuration of the exterior cylinder are modeled without additional efforts. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. The effects of the wide range wave parameters and the structure configuration are examined. This parametric study will help determine the various hydrodynamic effects of the concentric porous cylindrical structure.
文摘Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersion of fluid-saturated porous cylinders. To address these three limitations and investigate the mechanisms of moduli dispersion, we present the analytical solutions of the poromechanical responses and the elastic moduli dispersion of a transversely isotropic, fluid-saturated, finite porous cylinder subjected to a forced deformation test. Through an example, we demonstrate the effects of loading frequency, boundary conditions, and material's anisotropy, dimension, and permeability on the responses of pore pressure,force, displacement, and dynamic elastic moduli of the cylinder. The specimen's responses are significantly influenced by the frequency of the applied load, resulting in a drained state at low frequencies and an undrained state at high frequencies. At high frequencies, the sample behaves identically for an open or a closed lateral boundary, and permeability has insignificant effects. The dynamic elastic moduli are mainly controlled by the loading frequency and the ratio of the sample's radius to its height. Lastly,we show excellent matches between the newly derived analytical solution and laboratory measurements on one clay and two shale samples from Mont Terri.
基金financial support from the Ministry of Science, ICT and Future Planning, subjected to the project EDISON (Education-research Integration through Simulation On the Net, NRF-2011-0020560)
文摘In the present study, 2-D large eddy simulations(LES) are conducted for flow past a porous circular array with a solid volume fraction(SVF) of 8.8%, 15.4% and 21.5%. Such simulations are relevant to understanding flow in natural streams and channels containing patches of emerged vegetation. In the simulations discussed in the paper, the porous cylinder of diameter D contains a variable number of identical solid circular cylinders(rigid plant stems) of diameter d= 0.048 D. Most of the simulations are conducted at a Reynolds number of 2 100 based on the diameter D and the velocity of the steady uniform incoming flow. Though in all cases wake billows are shed in the regions where the separated shear layers(SSLs) forming on the sides of the porous cylinder interact, the effect of these wake billows on the mean drag is different. While in the high SVF case(21.5%), the total drag force oscillates quasi-regularly in time, similar to the canonical case of a large solid cylinder, in the cases with a lower SVF the shedding of the wake billows takes place sufficiently far from the cylinder such that the unsteady component of the total drag force is negligible. The mean amplitude of the oscillations of the drag force on the individual cylinders is the largest in a streamwise band centered around the center of the porous cylinder, where the wake to wake interactions are the strongest. In all cases the maximum drag force on the individual cylinders is the largest for the cylinders directly exposed to the flow, but this force is always smaller than the one induced on a small isolated cylinder and the average magnitude of the force on the cylinders directly exposed to the flow decreases monotonically with the increase in the SVF. Predictions of the global drag coefficients, Strouhal numbers associated with the wake vortex shedding and individual forces on the cylinders in the array from the present LES are in very good agreement with those of 2-D direct numerical simulations conducted on finer meshes, which suggests LES is a better option to numerically investigate flow in channels containing canopy patches, given that LES is computationally much less expensive than DNS at high Reynolds number. To prove this point, the paper also discusses results of 2-D LES conducted at a much higher Reynolds number, where the near-wake flow is strongly turbulent. For the higher Reynolds number cases, where the influence of the turbulence model is important, the effect of the sub-grid scale model and the predictive capabilities of the unsteady Reynolds averaged Navier-Stokes(RANS) approach to predict flow past porous cylinders are discussed.