期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Equivalent Stiffness of the Saturated Poro-elastic Half Space Interacting with an Infinite Beam to Harmonic Moving Loads 被引量:1
1
作者 夏志凡 王建华 +1 位作者 徐斌 陆建飞 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第4期385-392,共8页
The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave nu... The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave number domain. Based on the obtained equivalent stiffness, the frequency wave number domain solution of the beam-half-space system is obtained by the compatibility condition between the beam and the half space. Critical velocity of harmonic moving loads along an infinite Euler-Bernoulli elastic beam is determined. The time domain solutions for the beam and the saturated poro-elastic half space are derived by means of the inverse Fourier transformation method. Also, the influences of the load speed, frequency and material parameters of the poro-elastic half space on the responses of the beam are investigated. Numerical results show that the frequency corresponding to the maximum deflection and bending moment increases with increasing load speed. Moreover, it can be seen that at higher frequencies, the dynamic response is independent of the load speed. The present results also show that for a beam overlying a saturated poro-elastic half space, there still exist critical velocities even when the load velocity is larger than the shear wave speed of the medium. 展开更多
关键词 harmonic moving loads saturated poro-elastic half space Biot's theory infinite beam Fourier transformation method
原文传递
Micro-annulus generation under downhole conditions: Insights from three-dimensional staged finite element analysis of cement hardening and wellbore operations 被引量:1
2
作者 Weicheng Zhang Andreas Eckert 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1185-1200,共16页
A micro-annulus(MA)is defined as a high permeability zone or gap initiating/occurring at the casingcement and cement-formation interfaces during the wellbore life span.An MA can significantly compromise wellbore integ... A micro-annulus(MA)is defined as a high permeability zone or gap initiating/occurring at the casingcement and cement-formation interfaces during the wellbore life span.An MA can significantly compromise wellbore integrity by establishing enhanced fluid flow pathways.This study uses a staged finite element approach to simulate wellbore integrity during various loading steps of wellbore operations under downhole conditions.Particular emphasis is placed on the processes of cement poro-elastic property evolution,volume variation,and pore pressure variation as part of the cement hardening step.The resulting state of stress during the life cycle of a typical injection well(i.e.hardening,completion,and injection)is analyzed to assess the onset and evolution of micro-annuli at various interfaces of the composite wellbore system under downhole conditions.The results show that cement shear failure is observed at the casing-cement interface during pressure testing(excessive wellbore pressure);and tensile debonding failure initiates at the cement-formation interface due to cement shrinkage during hardening and injection-related cooling(thermal cycling).Sensitivity analyses considering several parameters show that:(1)the degree of poro-elastic bulk shrinkage has significant implications for both shear and tensile failure initiation e the less the cement shrinks,the less likely the failure initiation is;(2)cement integrity increases with increasing depth;(3)cement pore pressure evolution has significant implications for tensile failure e if cement pore pressure decreases more,higher temperature differences can be sustained before an MA occurs;and(4)cement temperature fluctuations during hardening promote initiation of debonding failure.In summary,the results presented indicate that establishing downhole conditions to quantitatively analyze MA generation is necessary.The results are different compared to laboratory studies without considering/simulating downhole conditions.The knowledge from this study can raise the awareness of predicting and evaluating MA under downhole conditions and can be used to supplement and improve future laboratory experiments. 展开更多
关键词 Micro-annulus DEBONDING Staged finite element analysis Cement hardening poro-elastic bulk shrinkage Pore pressure Temperature fluctuation
在线阅读 下载PDF
A phase-field model for simulating the propagation behavior of mixed-mode cracks during the hydraulic fracturing process in fractured reservoirs 被引量:1
3
作者 Dan ZHANG Liangping YI +4 位作者 Zhaozhong YANG Jingqiang ZHANG Gang CHEN Ruoyu YANG Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期911-930,共20页
A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the dr... A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the driving force for the phase field consists of both tensile and shear components,with the fluid contribution primarily manifesting in the tension driving force.The displacement and pressure are solved simultaneously by an implicit method.The numerical solution's iterative format is established by the finite element discretization and Newton-Raphson(NR)iterative methods.The correctness of the model is verified through the uniaxial compression physical experiments on fluid-pressurized rocks,and the limitations of the hydraulic fracture expansion phase-field model,which only considers mode I fractures,are revealed.In addition,the influence of matrix mode II fracture toughness value,natural fracture mode II toughness value,and fracturing fluid injection rate on the hydraulic fracture propagation in porous media with natural fractures is studied. 展开更多
关键词 mixed-mode crack hydraulic fracturing poro-elasticity phase-field method(PFM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部