Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing ex...Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing excellent petrophysical properties,such as high porosity and permeability,these reservoirs typically exhibit a notably low recovery factor,sometimes falling below 10%.Previous research has indicated that various enhanced oil recovery(EOR)methods,such as water alternating gas(WAG),can substantially augment the recovery factor in pre-salt reservoirs,resulting in improvements of up to 20%.Nevertheless,the fluid flow mechanism within Brazilian carbonate reservoirs,characterized by complex pore geometry,remains unclear.Our study examines the behavior of fluid flow in a similar heterogeneous porous material,utilizing a plug sample obtained from a vugular segment of a Brazilian stromatolite outcrop,known to share analogies with certain pre-salt reservoirs.We conducted single-phase and multi-phase core flooding experiments,complemented by medical-CT scanning,to generate flow streamlines and evaluate the efficiency of water flooding.Subsequently,micro-CT scanning of the core sample was performed,and two cross-sections from horizontal and vertical plates were constructed.These cross-sections were then employed as geometries in a numerical simulator,enabling us to investigate the impact of pore geometry on fluid flow.Analysis of the pore-scale modeling and experimental data unveiled that the presence of dead-end pores and vugs results in a significant portion of the fluid remaining stagnant within these regions.Consequently,the injected fluid exhibits channeling-like behavior,leading to rapid breakthrough and low areal swept efficiency.Additionally,the numerical simulation results demonstrated that,irrespective of the size of the dead-end regions,the pressure variation within the dead-end vugs and pores is negligible.Despite the stromatolite's favorable petrophysical properties,including relatively high porosity and permeability,as well as the presence of interconnected large vugs,the recovery factor during water flooding remained low due to early breakthrough.These findings align with field data obtained from pre-salt reservoirs,providing an explanation for the observed low recovery factor during water flooding in such reservoirs.展开更多
Only a few studies have examined how pore geometry affects the mechanical characteristics, biological behavior, and degradation of additively manufactured biodegradable porous magnesium. In this work, the effects of p...Only a few studies have examined how pore geometry affects the mechanical characteristics, biological behavior, and degradation of additively manufactured biodegradable porous magnesium. In this work, the effects of pore geometry on mechanical qualities, degradation,and biological behavior were investigated using three typical porous architectures with the same porosity. The porous structures were found to satisfy bone tissue engineering requirements because they had sufficient degradation resistance and tunable compressive characteristics. All three types of magnesium alloy scaffolds exhibited good biocompatibility. Additionally, the magnesium alloy porous structures influenced the magnesium scaffold material degradation rate and the surrounding environment, impacting the osteogenic differentiation of bone mesenchymal stem cells and bone tissue regeneration. This work offers conceptual support for optimizing pore geometry to alter the mechanical and degradable characteristics of additively manufactured porous magnesium to meet therapeutic demands.展开更多
Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study establis...Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models.These models include circular,square,and equilateral triangular capillaries;a triangular star-shaped cross-section formed by three tangent spherical particles;and a traditional porous medium representation method.All these models are derived based on Newton’s second law,where capillary pressure is described by the Young-Laplace equation and viscous resistance is characterized by the Hagen-Poiret equation and Darcy’s law.All derived models predict that the fluid imbibition distance is proportional to the square root of time,in accordance with the classical Lucas-Washburn law.However,different pore structures exhibit significantly different characteristic imbibition rates.Compared to the single pore model,the conventional Darcy’s law-based model for porous media predicts significantly lower imbibition rates,which is consistent with the relatively slower uptake rates in actual shale nanoscale pore networks.These findings emphasize the important role played by pore geometry in fluid imbibition dynamics and further point to the need for optimizing pore structure to extend fluid imbibition duration in shale reservoirs in practical operations.展开更多
Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (...Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding.展开更多
Pore architecture in bioceramic scaffolds plays an important role in facilitating vascularization efficiency during bone repair or orbital reconstruction.Many investigations have explored this relationship but lack in...Pore architecture in bioceramic scaffolds plays an important role in facilitating vascularization efficiency during bone repair or orbital reconstruction.Many investigations have explored this relationship but lack integrating pore architectural features in a scaffold,hindering optimization of architectural parameters(geometry,size and curvature)to improve vascularization and consequently clinical outcomes.To address this challenge,we have developed an integrating design strategy to fabricate different pore architectures(cube,gyroid and hexagon)with different pore dimensions(-350,500 and 650 lm)in the silicate-based bioceramic scaffolds via digital light processing technique.The sintered scaffolds maintained high-fidelity pore architectures similar to the printing model.The hexagon-and gyroid-pore scaffolds exhibited the highest and lowest compressive strength(from 15 to 55MPa),respectively,but the cube-pore scaffolds showed appreciable elastic modulus.Moreover,the gyroid-pore architecture contributed on a faster ion dissolution and mass decay in vitro.It is interesting that bothμCT and histological analyses indicate vascularization efficiency was challenged even in the 650-μm pore region of hexagon-pore scaffolds within 2weeks in rabbit models,but the gyroid-pore constructs indicated appreciable blood vessel networks even in the 350-μm pore region at 2weeks and high-density blood vessels were uniformly invaded in the 500-and 650-μm pore at 4weeks.Angiogenesis was facilitated in the cube-pore scaffolds in comparison with the hexagon-pore ones within 4weeks.These studies demonstrate that the continuous pore wall curvature feature in gyroid-pore architecture is an important implication for biodegradation,vascular cell migration and vessel ingrowth in porous bioceramic scaffolds.展开更多
Pore size determination of hydrocarbon reservoirs is one of the main challenging areas in reservoir studies.Precise estimation of this parameter leads to enhance the reservoir simulation,process evaluation,and further...Pore size determination of hydrocarbon reservoirs is one of the main challenging areas in reservoir studies.Precise estimation of this parameter leads to enhance the reservoir simulation,process evaluation,and further forecasting of reservoir behavior.Hence,it is of great importance to estimate the pore size of reservoir rocks with an appropriate accuracy.In the present study,a modified J-function was developed and applied to determine the pore radius in one of the hydrocarbon reservoir rocks located in the Middle East.The capillary pressure data vs.water saturation(PceSw)as well as routine reservoir core analysis include porosity(4)and permeability(k)were used to develop the J-function.First,the normalized porosity(4z),the rock quality index(RQI),and the flow zone indicator(FZI)concepts were used to categorize all data into discrete hydraulic flow units(HFU)containing unique pore geometry and bedding characteristics.Thereafter,the modified J-function was used to normalize all capillary pressure curves corresponding to each of predetermined HFU.The results showed that the reservoir rock was classified into five separate rock types with the definite HFU and reservoir pore geometry.Eventually,the pore radius for each of these HFUs was determined using a developed equation obtained by normalized J-function corresponding to each HFU.The proposed equation is a function of reservoir rock characteristics including 4z,FZI,lithology index(J*),and pore size distribution index(3).This methodology used,the reservoir under study was classified into five discrete HFU with unique equations for permeability,normalized J-function and pore size.The proposed technique is able to apply on any reservoir to determine the pore size of the reservoir rock,specially the one with high range of heterogeneity in the reservoir rock properties.展开更多
Porosity parameters are one of the structural properties of the extracellular microenvironment that have been shown to have a great impact on the cellular phenotype and various biological activities such as diffusion ...Porosity parameters are one of the structural properties of the extracellular microenvironment that have been shown to have a great impact on the cellular phenotype and various biological activities such as diffusion of fluid,initial protein adsorption,permeability,cell penetration and migration,ECM deposition,angiogenesis,and rate and pattern of new tissue formation.The heterogeneity of the study protocols and research methodologies do not allow reliable meta-analysis for definite findings.As such,despite the huge available literature,no generally accepted consensus is defined for the porosity requirements of specific tissue engineering applications.However,based on the biomimetic approach,the biological substitutes should replicate the 3D local microenvironment of the recipient site with matching porosity parameters to best support local cells during tissue regeneration.Ideally,the porosity of biomaterials should mimic the porosity of the substituting natural tissue and match the clinical requirements.Careful analysis of the impact of architectures(i.e.,porosity)on biophysical,biochemical,and biological behaviors will support designing smart biomaterials with customized architectural and functional properties that are patient and defect site-specific.展开更多
The pore architecture of porous scaffolds is a critical factor in osteogenesis,but it is a challenge to precisely configure strut-based scaffolds because of the inevitable filament corner and pore geometry deformation...The pore architecture of porous scaffolds is a critical factor in osteogenesis,but it is a challenge to precisely configure strut-based scaffolds because of the inevitable filament corner and pore geometry deformation.This study provides a pore architecture tailoring strategy in which a series of Mg-doped wollastonite scaffolds with fully interconnected pore networks and curved pore architectures called triply periodic minimal surfaces(TPMS),which are similar to cancellous bone,are fabricated by a digital light processing technique.The sheet-TPMS pore geometries(s-Diamond,s-Gyroid)contribute to a 3‒4-fold higher initial compressive strength and 20%-40%faster Mg-ion-release rate compared to the other-TPMS scaffolds,including Diamond,Gyroid,and the Schoen’s I-graph-Wrapped Package(IWP)in vitro.However,we found that Gyroid and Diamond pore scaffolds can significantly induce osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs).Analyses of rabbit experiments in vivo show that the regeneration of bone tissue in the sheet-TPMS pore geometry is delayed;on the other hand,Diamond and Gyroid pore scaffolds show notable neo-bone tissue in the center pore regions during the early stages(3-5 weeks)and the bone tissue uniformly fills the whole porous network after 7 weeks.Collectively,the design methods in this study provide an important perspective for optimizing the pore architecture design of bioceramic scaffolds to accelerate the rate of osteogenesis and promote the clinical translation of bioceramic scaffolds in the repair of bone defects.展开更多
基金the support of EPIC-Energy Production Innovation Center,hosted by the University of Campinas(UNICAMP)sponsored by FAPESP-Sao Paulo Research Foundation(2017/15736e3 process).
文摘Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing excellent petrophysical properties,such as high porosity and permeability,these reservoirs typically exhibit a notably low recovery factor,sometimes falling below 10%.Previous research has indicated that various enhanced oil recovery(EOR)methods,such as water alternating gas(WAG),can substantially augment the recovery factor in pre-salt reservoirs,resulting in improvements of up to 20%.Nevertheless,the fluid flow mechanism within Brazilian carbonate reservoirs,characterized by complex pore geometry,remains unclear.Our study examines the behavior of fluid flow in a similar heterogeneous porous material,utilizing a plug sample obtained from a vugular segment of a Brazilian stromatolite outcrop,known to share analogies with certain pre-salt reservoirs.We conducted single-phase and multi-phase core flooding experiments,complemented by medical-CT scanning,to generate flow streamlines and evaluate the efficiency of water flooding.Subsequently,micro-CT scanning of the core sample was performed,and two cross-sections from horizontal and vertical plates were constructed.These cross-sections were then employed as geometries in a numerical simulator,enabling us to investigate the impact of pore geometry on fluid flow.Analysis of the pore-scale modeling and experimental data unveiled that the presence of dead-end pores and vugs results in a significant portion of the fluid remaining stagnant within these regions.Consequently,the injected fluid exhibits channeling-like behavior,leading to rapid breakthrough and low areal swept efficiency.Additionally,the numerical simulation results demonstrated that,irrespective of the size of the dead-end regions,the pressure variation within the dead-end vugs and pores is negligible.Despite the stromatolite's favorable petrophysical properties,including relatively high porosity and permeability,as well as the presence of interconnected large vugs,the recovery factor during water flooding remained low due to early breakthrough.These findings align with field data obtained from pre-salt reservoirs,providing an explanation for the observed low recovery factor during water flooding in such reservoirs.
基金National Key Research and Development Program of China (2018YFE0104200)Youth Innovation Promotion Association CAS (2019031)National Natural Science Foundation of China (51875310,52175274, 82172065)。
文摘Only a few studies have examined how pore geometry affects the mechanical characteristics, biological behavior, and degradation of additively manufactured biodegradable porous magnesium. In this work, the effects of pore geometry on mechanical qualities, degradation,and biological behavior were investigated using three typical porous architectures with the same porosity. The porous structures were found to satisfy bone tissue engineering requirements because they had sufficient degradation resistance and tunable compressive characteristics. All three types of magnesium alloy scaffolds exhibited good biocompatibility. Additionally, the magnesium alloy porous structures influenced the magnesium scaffold material degradation rate and the surrounding environment, impacting the osteogenic differentiation of bone mesenchymal stem cells and bone tissue regeneration. This work offers conceptual support for optimizing pore geometry to alter the mechanical and degradable characteristics of additively manufactured porous magnesium to meet therapeutic demands.
文摘Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models.These models include circular,square,and equilateral triangular capillaries;a triangular star-shaped cross-section formed by three tangent spherical particles;and a traditional porous medium representation method.All these models are derived based on Newton’s second law,where capillary pressure is described by the Young-Laplace equation and viscous resistance is characterized by the Hagen-Poiret equation and Darcy’s law.All derived models predict that the fluid imbibition distance is proportional to the square root of time,in accordance with the classical Lucas-Washburn law.However,different pore structures exhibit significantly different characteristic imbibition rates.Compared to the single pore model,the conventional Darcy’s law-based model for porous media predicts significantly lower imbibition rates,which is consistent with the relatively slower uptake rates in actual shale nanoscale pore networks.These findings emphasize the important role played by pore geometry in fluid imbibition dynamics and further point to the need for optimizing pore structure to extend fluid imbibition duration in shale reservoirs in practical operations.
文摘Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding.
基金financial support from the National Key Research and Development Program of China(2017YFE0117700)the National Natural Science Foundation of China(81871775,81902225,81772311)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LBY21H060001,LGF21H060002,Z22E029971)the Medical and Health Research Project of Zhejiang Province(2020KY929,2020RC115).
文摘Pore architecture in bioceramic scaffolds plays an important role in facilitating vascularization efficiency during bone repair or orbital reconstruction.Many investigations have explored this relationship but lack integrating pore architectural features in a scaffold,hindering optimization of architectural parameters(geometry,size and curvature)to improve vascularization and consequently clinical outcomes.To address this challenge,we have developed an integrating design strategy to fabricate different pore architectures(cube,gyroid and hexagon)with different pore dimensions(-350,500 and 650 lm)in the silicate-based bioceramic scaffolds via digital light processing technique.The sintered scaffolds maintained high-fidelity pore architectures similar to the printing model.The hexagon-and gyroid-pore scaffolds exhibited the highest and lowest compressive strength(from 15 to 55MPa),respectively,but the cube-pore scaffolds showed appreciable elastic modulus.Moreover,the gyroid-pore architecture contributed on a faster ion dissolution and mass decay in vitro.It is interesting that bothμCT and histological analyses indicate vascularization efficiency was challenged even in the 650-μm pore region of hexagon-pore scaffolds within 2weeks in rabbit models,but the gyroid-pore constructs indicated appreciable blood vessel networks even in the 350-μm pore region at 2weeks and high-density blood vessels were uniformly invaded in the 500-and 650-μm pore at 4weeks.Angiogenesis was facilitated in the cube-pore scaffolds in comparison with the hexagon-pore ones within 4weeks.These studies demonstrate that the continuous pore wall curvature feature in gyroid-pore architecture is an important implication for biodegradation,vascular cell migration and vessel ingrowth in porous bioceramic scaffolds.
文摘Pore size determination of hydrocarbon reservoirs is one of the main challenging areas in reservoir studies.Precise estimation of this parameter leads to enhance the reservoir simulation,process evaluation,and further forecasting of reservoir behavior.Hence,it is of great importance to estimate the pore size of reservoir rocks with an appropriate accuracy.In the present study,a modified J-function was developed and applied to determine the pore radius in one of the hydrocarbon reservoir rocks located in the Middle East.The capillary pressure data vs.water saturation(PceSw)as well as routine reservoir core analysis include porosity(4)and permeability(k)were used to develop the J-function.First,the normalized porosity(4z),the rock quality index(RQI),and the flow zone indicator(FZI)concepts were used to categorize all data into discrete hydraulic flow units(HFU)containing unique pore geometry and bedding characteristics.Thereafter,the modified J-function was used to normalize all capillary pressure curves corresponding to each of predetermined HFU.The results showed that the reservoir rock was classified into five separate rock types with the definite HFU and reservoir pore geometry.Eventually,the pore radius for each of these HFUs was determined using a developed equation obtained by normalized J-function corresponding to each HFU.The proposed equation is a function of reservoir rock characteristics including 4z,FZI,lithology index(J*),and pore size distribution index(3).This methodology used,the reservoir under study was classified into five discrete HFU with unique equations for permeability,normalized J-function and pore size.The proposed technique is able to apply on any reservoir to determine the pore size of the reservoir rock,specially the one with high range of heterogeneity in the reservoir rock properties.
文摘Porosity parameters are one of the structural properties of the extracellular microenvironment that have been shown to have a great impact on the cellular phenotype and various biological activities such as diffusion of fluid,initial protein adsorption,permeability,cell penetration and migration,ECM deposition,angiogenesis,and rate and pattern of new tissue formation.The heterogeneity of the study protocols and research methodologies do not allow reliable meta-analysis for definite findings.As such,despite the huge available literature,no generally accepted consensus is defined for the porosity requirements of specific tissue engineering applications.However,based on the biomimetic approach,the biological substitutes should replicate the 3D local microenvironment of the recipient site with matching porosity parameters to best support local cells during tissue regeneration.Ideally,the porosity of biomaterials should mimic the porosity of the substituting natural tissue and match the clinical requirements.Careful analysis of the impact of architectures(i.e.,porosity)on biophysical,biochemical,and biological behaviors will support designing smart biomaterials with customized architectural and functional properties that are patient and defect site-specific.
基金The authors would like to acknowledge financial support from the National Key Research and Development Program of China(2017YFE0117700)National Natural Science Foundation of China(82172419,81902225,81871775)+1 种基金Natural Science Foundation of Zhejiang Province(LGF21H060006,LZ22E020002,LQ23H060005,LQ23H150004)Zhejiang Province Public Welfare Technology Application Research Project(LGF22E030002).
文摘The pore architecture of porous scaffolds is a critical factor in osteogenesis,but it is a challenge to precisely configure strut-based scaffolds because of the inevitable filament corner and pore geometry deformation.This study provides a pore architecture tailoring strategy in which a series of Mg-doped wollastonite scaffolds with fully interconnected pore networks and curved pore architectures called triply periodic minimal surfaces(TPMS),which are similar to cancellous bone,are fabricated by a digital light processing technique.The sheet-TPMS pore geometries(s-Diamond,s-Gyroid)contribute to a 3‒4-fold higher initial compressive strength and 20%-40%faster Mg-ion-release rate compared to the other-TPMS scaffolds,including Diamond,Gyroid,and the Schoen’s I-graph-Wrapped Package(IWP)in vitro.However,we found that Gyroid and Diamond pore scaffolds can significantly induce osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs).Analyses of rabbit experiments in vivo show that the regeneration of bone tissue in the sheet-TPMS pore geometry is delayed;on the other hand,Diamond and Gyroid pore scaffolds show notable neo-bone tissue in the center pore regions during the early stages(3-5 weeks)and the bone tissue uniformly fills the whole porous network after 7 weeks.Collectively,the design methods in this study provide an important perspective for optimizing the pore architecture design of bioceramic scaffolds to accelerate the rate of osteogenesis and promote the clinical translation of bioceramic scaffolds in the repair of bone defects.