期刊文献+
共找到23,643篇文章
< 1 2 250 >
每页显示 20 50 100
Multidimensional data-driven porous media reconstruction:Inversion from 1D/2D pore parameters to 3D real pores
1
作者 Peng Chi Jian-Meng Sun +5 位作者 Ran Zhang Wei-Chao Yan Huai-Min Dong Li-Kai Cui Rui-Kang Cui Xin Luo 《Petroleum Science》 2025年第7期2777-2793,共17页
Subsurface rocks,as complex porous media,exhibit multiscale pore structures and intricate physical properties.Digital rock physics technology has become increasingly influential in the study of subsurface rock propert... Subsurface rocks,as complex porous media,exhibit multiscale pore structures and intricate physical properties.Digital rock physics technology has become increasingly influential in the study of subsurface rock properties.Given the multiscale characteristics of rock pore structures,direct three-dimensional imaging at sub-micrometer and nanometer scales is typically infeasible.This study introduces a method for reconstructing porous media using multidimensional data,which combines one-dimensional pore structure parameters with two-dimensional images to reconstruct three-dimensional models.The pore network model(PNM)is stochastically reconstructed using one-dimensional parameters,and a generative adversarial network(GAN)is utilized to equip the PNM with pore morphologies derived from two-dimensional images.The digital rocks generated by this method possess excellent controllability.Using Berea sandstone and Grosmont carbonate samples,we performed digital rock reconstructions based on PNM extracted by the maximum ball algorithm and compared them with stochastically reconstructed PNM.Pore structure parameters,permeability,and formation factors were calculated.The results show that the generated samples exhibit good consistency with real samples in terms of pore morphology,pore structure,and physical properties.Furthermore,our method effectively supplements the micropores not captured in CT images,demonstrating its potential in multiscale carbonate samples.Thus,the proposed reconstruction method is promising for advancing porous media property research. 展开更多
关键词 3D digital rock pore network model 1D/2D pore parameters pore structure Generative adversarial network
原文传递
Tailoring the pore structure of hard carbon for enhanced sodium-ion battery anodes
2
作者 SONG Ning-Jing MA Can-liang +3 位作者 GUO Nan-nan ZHAO Yun LI Wan-xi LI Bo-qiong 《新型炭材料(中英文)》 北大核心 2025年第2期377-391,共15页
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv... Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials. 展开更多
关键词 pore structure regulation Closed pore Corn cob Hard carbon anode material Sodium-ion batteries
在线阅读 下载PDF
Highly selective acetylene capture by a pacs‑type metal‑organic framework constructed using metal‑formate complexes as pore partition units
3
作者 GUO Hongzhe WANG Sen +3 位作者 YANG Lu LIU Fucheng ZHAO Jiongpeng YAO Zhaoquan 《无机化学学报》 北大核心 2025年第10期2157-2164,共8页
To obtain materials capable of efficiently separating acetylene(C_(2)H_(2))from carbon dioxide(CO_(2))and eth-ylene(C_(2)H_(4)),In this work,based on the pore space partition strategy,a pacs-metal-organic framework(MO... To obtain materials capable of efficiently separating acetylene(C_(2)H_(2))from carbon dioxide(CO_(2))and eth-ylene(C_(2)H_(4)),In this work,based on the pore space partition strategy,a pacs-metal-organic framework(MOF):(NH_(2)Me_(2))_(2)[Fe_(3)(μ_(3)-O)(bdc)_(3)][In(FA)_(3)Cl_(3)](Fe‑FAIn‑bdc)was synthesized successfully by using the metal-formate com-plex[In(FA)_(3)Cl_(3)]^(3-)as the pore partition units,where bdc^(2-)=terephthalate,FA-=formate.Owing to the pore partition effect of this metal-organic building block,fruitful confined spaces are formed in the network of Fe‑FAIn‑bdc,endowing this MOF with superior separation performance of acetylene and carbon dioxide.According to the adsorp-tion test,this MOF exhibited a high adsorption capacity for C_(2)H_(2)(50.79 cm^(3)·g^(-1))at 298 K and 100 kPa,which was much higher than that for CO_(2)(29.99 cm^(3)·g^(-1))and C_(2)H_(4)(30.94 cm^(3)·g^(-1))under the same conditions.Ideal adsorbed solution theory(IAST)calculations demonstrate that the adsorption selectivity of Fe‑FAIn‑bdc for the mixture of C_(2)H_(2)/CO_(2)and C_(2)H_(2)/C_(2)H_(4)in a volume ratio of 50∶50 was 3.08 and 3.65,respectively,which was higher than some reported MOFs such as NUM-11 and SNNU-18.CCDC:_(2)453954. 展开更多
关键词 pore space partition strategy metal-organic framework pore-partition ligands separation of C_(2)H_(2)/CO_(2)
在线阅读 下载PDF
Pore structure variation characteristics of a Chinese local mudstone before and after the first cycle of wetting and drying
4
作者 ZHANG Qing-song LIU Zhi-bin +3 位作者 TANG Ya-sen DENG Yong-feng LUO Ting-yi MENG Fan-xing 《Journal of Central South University》 2025年第2期582-596,共15页
As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD ... As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles. 展开更多
关键词 MUDSTONE wetting and drying cycle X-ray micro-computed tomography pore structure pore morphology
在线阅读 下载PDF
Pore formation and evolution mechanisms during hydrocarbon generation in organic-rich marl
5
作者 Tong Wang Xiao-Feng Wang +6 位作者 Dong-Dong Zhang Qing-Tao Wang Hou-Yong Luo Jie Wang Zhong-Liang Ma Zhang-Xing Chen Wen-Hui Liu 《Petroleum Science》 2025年第2期557-573,共17页
Marine organic-rich marl is not only a high-quality hydrocarbon source of conventional oil and gas,but also a new type and field of unconventional oil and gas exploration.An understanding of its pore structure evoluti... Marine organic-rich marl is not only a high-quality hydrocarbon source of conventional oil and gas,but also a new type and field of unconventional oil and gas exploration.An understanding of its pore structure evolution characteristics during a hydrocarbon generation process is theoretically significant and has application prospects for the exploration and development of this special type of natural gas reservoirs.This study conducted thermal simulation of hydrocarbon generation under near-geological conditions during a whole process for cylinder samples of low mature marine organic-rich marl in the Middle Devonian of Luquan,Yunnan Province,China.During this process,hydrocarbon products at different evolution stages were quantified and corresponding geochemical properties were analyzed.Simultaneously,field emission scanning electron microscopy(FE-SEM)and low-pressure gas adsorption(CO_(2),N_(2))tests were applied to the corresponding cylinder residue samples to reveal the mechanisms of different types of pore formation and evolution,and clarify the dynamic evolution processes of their pore systems.The results show that with an increase in temperature and pressure,the total oil yield peaks at an equivalent vitrinite reflectance(VR_(o))of 1.03%and is at the maximum retention stage of liquid hydrocarbons,which are 367.51 mg/g TOC and 211.67 mg/g TOC,respectively.The hydrocarbon gas yield increases continuously with an increase in maturity.The high retained oil rate at the peak of oil generation provides an abundant material basis for gas formation at high maturity and over-maturity stage.The lower limit of VR_(o)for organic matter(OM)pore mass development is about 1.6%,and bitumen pores,organic-clay complex pores together with intergranular pores,grain edge seams and dissolution pores constitute a complicated pore-seam-network system,which is the main reservoir space for unconventional carbonate gas.Pore formation and evolution are controlled synergistically by hydrocarbon generation,diagenesis and organic-inorganic interactions,and the pattern of pore structure evolution can be divided into four stages.A pore volume(PV)and a specific surface area(SSA)are at their highest values within the maturity range of 1.9%to 2.5%,which is conducive to exploring unconventional natural gas. 展开更多
关键词 Organic-rich marl Hydrocarbon generation-expulsion-retention process OM pores pore evolution Organic-inorganic interactions
原文传递
Water adsorption performance of over-mature shale and its relationship with organic and inorganic nanopores: A case study of Lower Cambrian shale from the Sichuan Basin, China
6
作者 Yi-Jie Xing Xian-Ming Xiao +2 位作者 Peng Cheng Yan-Ming Zhao Wei Liu 《Petroleum Science》 2025年第3期977-997,共21页
The water adsorption performance of shale gas reservoirs is a very important factor affecting their gas in place(GIP)contents,but the water-holding capacity and mechanism of over-mature shale,especially organic pores,... The water adsorption performance of shale gas reservoirs is a very important factor affecting their gas in place(GIP)contents,but the water-holding capacity and mechanism of over-mature shale,especially organic pores,are still not fully understood.In this study,systematic water vapor adsorption(WVA)experiments were carried out on the Lower Cambrian over-mature shale and its kerogen from the Sichuan Basin,China to characterize their WVA behaviors,and combined with the low-pressure gas(N_(2) and CO_(2))adsorption experiments,the main influencing factors of WVA capacity of the shale and the absorbed-water distribution in its organic and inorganic nanopores were investigated.The results show that the WVA isotherms of shale and kerogen are all typeⅡ,with an obvious hysteresis loop in the multilayer adsorption range,and that the positive relationship of the shale TOC content with the WVA capacity(including total adsorption capacity,primary adsorption capacity and secondary adsorption capacity)and WVA hysteresis index(AHIW),and the greater adsorption capacity and AHIW of kerogen than the shale,all indicate that the hydrophilicity of organic matter(OM)in the over-mature shale was underestimated in previous research.Although both the shale OM and clay minerals have a significant positive effect on the WVA,the former has a stronger adsorption ability than the latter.The WVA capacity of the studied Lower Cambrian shale is significantly greater than that of the Longmaxi shale reported in literatures,which was believed to be mainly attributed to its higher maturity,with a significant graphitization of OM.The shale micropores and non-micropores play an important role in WVA,especially OM pores.There are primary and secondary adsorption for water vapor in both the micropores and non-micropores of OM,while these adsorptions of minerals mainly occur in their non-micropores.These results have important guides for understanding the gas storage mechanism and exploration and development potential of marine over-mature shale in southern China,especially the Lower Cambrian shale. 展开更多
关键词 Lowerc ambrian shale Over-mature Water vapor adsorption Organic pores Inorganic pores
原文传递
Effect of hierarchical cell structure and internal pores on mechanical properties of thixomolded AZ91D magnesium alloy 被引量:1
7
作者 Li-dong GU Xiao-qing SHANG +3 位作者 Jie WANG Jun-jun DENG Zhen ZHAO Xiao-qin ZENG 《Transactions of Nonferrous Metals Society of China》 2025年第3期749-764,共16页
A comprehensive analysis of the microstructure and defects of a thixomolded AZ91D alloy was conducted to elucidate their influences on mechanical properties.Samples were made at injection temperatures ranging from 580... A comprehensive analysis of the microstructure and defects of a thixomolded AZ91D alloy was conducted to elucidate their influences on mechanical properties.Samples were made at injection temperatures ranging from 580 to 640℃.X-ray computed tomography was used to visualize pores,and crystal plasticity finite element simulation was adopted for deformation analysis.The microstructure characterizations reveal a hierarchical cell feature composed of α-Mg and eutectic phases.With the increase of injection temperature,large cell content in the material decreases,while the strength of the alloy increases.The underlying mechanism about strength change is that coarse-grained solids experience smaller stress even in hard orientations.The sample fabricated at a moderate temperature of 620℃ exhibits the highest elongation,least quantity and lower local concentration of pores.The detachment and tearing cracks formed at lower injection temperature and defect bands formed at higher injection temperature add additional crack sources and deteriorate the ductility of the materials. 展开更多
关键词 AZ91D magnesium alloy fabrication technology cell structure pores STRENGTH DUCTILITY
在线阅读 下载PDF
Pore-scale investigation of forced imbibition in porous rocks through interface curvature and pore topology analysis 被引量:1
8
作者 Jianchao Cai Xiangjie Qin +2 位作者 Han Wang Yuxuan Xia Shuangmei Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期245-257,共13页
Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa... Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping. 展开更多
关键词 Forced imbibition Porous rocks Interface dynamics pore topology Residual fluid distribution
在线阅读 下载PDF
Relationship between pore throat structure and crude oil mobility of full particle sequence reservoirs in Permian Fengcheng Formation,Mahu Sag,Junggar Basin,NW China 被引量:1
9
作者 TANG Yong JIA Chengzao +8 位作者 CHEN Fangwen HE Wenjun ZHI Dongming SHAN Xiang YOU Xincai JIANG Lin ZOU Yang WU Tao XIE An 《Petroleum Exploration and Development》 2025年第1期112-124,共13页
Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the ... Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions. 展开更多
关键词 Junggar Basin Mahu Sag Lower Permian Fengcheng Formation full particle sequence reservoir pore throat structure crude oil mobility whole petroleum system
在线阅读 下载PDF
Modifying the pore structure of biomass-derived porous carbon for use in energy storage systems
10
作者 XIE Bin ZHAO Xin-ya +5 位作者 MA Zheng-dong ZHANG Yi-jian DONG Jia-rong WANG Yan BAI Qiu-hong SHEN Ye-hua 《新型炭材料(中英文)》 北大核心 2025年第4期870-888,共19页
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur... The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices. 展开更多
关键词 Energy storage systems Porous carbon Biomass precursors pore structure Machine learning-assisted
在线阅读 下载PDF
Changing the pore structure and surface chemistry of hard carbon by coating it with a soft carbon to boost high-rate sodium storage
11
作者 ZHONG Qin MO Ying +9 位作者 ZHOU Wang ZHENG Biao WU Jian-fang LIU Guo-ku Mohd Zieauddin Kufian Zurina Osman XU Xiong-wen GAO Peng YANG Le-zhi LIU Ji-lei 《新型炭材料(中英文)》 北大核心 2025年第3期651-665,共15页
Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy wi... Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability. 展开更多
关键词 Hard carbon Pitch-derived carbon coating Sodium-ion batteries pore structure Surface chemistry
在线阅读 下载PDF
Evolution of the 3D pore structure of organic-rich shale with temperature based on micro-nano CT
12
作者 Chao-Fan Zhu Tian-Le Zhang +5 位作者 Jun-Fan Pan Yan-Wei Li James J.Sheng Dong Ge Rui Jia Wei Guo 《Petroleum Science》 2025年第6期2339-2352,共14页
Organic-rich shale is a significant potential source of oil and gas that requires development through in situ conversion technology.However,the evolution patterns of the internal three-dimensional(3D)pore structure an... Organic-rich shale is a significant potential source of oil and gas that requires development through in situ conversion technology.However,the evolution patterns of the internal three-dimensional(3D)pore structure and kerogen distribution at high temperatures are not well understood,making it difficult to microscopically explain the evolution of the flow conductivity in organic-rich shale at high temperatures.This study utilizes high-resolution X-ray computed tomography(micro-nano CT)to obtain the distribution of pores,kerogen,and inorganic matter at different temperatures.Combined with the pyrolysis results for the rock,the evolution of the pore structure at various temperatures is quantitatively analyzed.Based on three-phase segmentation technology,a model of kerogen distribution in organicrich shale is established by dividing the kerogen into clustered kerogen and dispersed kerogen stored in the inorganic matter and the pores into inorganic pores and organic pores within the kerogen skeleton.The results show that the inorganic pores in organic-rich shale evolve through three stages as the temperature increases:kerogen pyrolysis(200-400℃),clay mineral decomposition(400-600℃),and carbonate mineral decomposition(600-800℃).The inorganic pores porosity sequentially increases from 3%to 11.4%,13.1%,and 15.4%,and the roughness and connectivity of the inorganic pores gradually increase during this process.When the pyrolysis temperature reaches 400℃,the volume of clustered kerogen decreases from 25%to 12.5%.During this process,the relative density of kerogen decreases from9.5 g/cm^(3) in its original state to 5.4 g/cm^(3),while the kerogen skeleton density increases from 1.15 g/cm^(3) in its original state to 1.54 g/cm^(3).Correspondingly,7%-8%of organic pores develop within the clustered kerogen,accounting for approximately 50%of the volume of clustered kerogen.In addition,approximately 30%of the kerogen in organic-rich shale exists in the form of dispersed kerogen within inorganic matter,and its variation trend is similar to that of clustered kerogen,rapidly decreasing from 200 to 400℃ and stabilizing above 400℃.The results of this study provide an essential microscopic theoretical basis for the industrial development of organic-rich shale resources. 展开更多
关键词 Organic-rich shale Micro-nano CT Kerogen pores Pyrolysis
原文传递
Geochemistry and Reservoir Characteristics of Jurassic Lacustrine Shale in the Sichuan Basin:Insights from Paleoenvironmental Constraints on Pore Structure
13
作者 LI Delu LI Haibin +7 位作者 LI Wangpeng HE Qianyang SUN Qiang WANG Zilong WANG Xingzhe WANG Fei LIU Cun GAO Yi 《Acta Geologica Sinica(English Edition)》 2025年第4期1153-1168,共16页
Pore structure directly affects the occurrence and migration of shale hydrocarbon,and the lack of research on the mechanism of the pore structure is an important reason for the hindrance of shale hydrocarbon explorati... Pore structure directly affects the occurrence and migration of shale hydrocarbon,and the lack of research on the mechanism of the pore structure is an important reason for the hindrance of shale hydrocarbon exploration.By analysing the geochemistry and reservoir characteristics of Jurassic lacustrine shales in Sichuan Basin,this study recovers their paleoenvironments and further discusses paleoenvironmental constraints on pore structure.The results show that the Lower Jurassic lacustrine shales in the Sichuan Basin are in a warm and humid semi-anoxic to anoxic lake environment with high productivity,a strong stagnant environment,and a rapid sedimentation rate,with water depths ranging from about 11.54-55.22 m,and a mixture of type Ⅱ/Ⅲ kerogen is developed.In terms of reservoir characteristics,they are dominated by open-slit pores,and the pores are relatively complex.The percentage of mesopores is the highest,while the percentage of macropores is the lowest.Further analysis shows that paleoclimate controls the overall pore complexity and surface relaxation of shales by influencing the weathering rate of mother rocks.Paleoredox conditions control the proportion and complexity of shale pores by influencing TOC content.The research results will provide theoretical basis for improving the exploration efficiency of lacustrine shale resources and expanding exploration target areas. 展开更多
关键词 PALEOENVIRONMENT pore structure constraining effect lacustrine shale Sichuan Basin
在线阅读 下载PDF
In situ loading of a pore network model for quantitative characterization and visualization of gas seepage in coal rocks
14
作者 Huazhe Jiao Xi Chen +4 位作者 Tiegang Zhang Quilligan Michael Yixuan Yang Xiaolin Yang Tongyi Yang 《Deep Underground Science and Engineering》 2025年第3期437-451,共15页
The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal ... The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells. 展开更多
关键词 coalbed methane fractal dimension FRACTURE pore network model SEEPAGE
原文传递
Prediction of intrusive gas pores caused by resin burning in sand core for iron castings
15
作者 Ji-wu Wang Xiao-long Wang +8 位作者 Yu-cheng Sun Yu-hang Huang Xiu-ming Chen Xiong-zhi Wu Na Li Jin-wu Kang Tao Jing Tian-you Huang Hai-liang Yu 《China Foundry》 2025年第1期23-32,共10页
In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occur... In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings. 展开更多
关键词 gas pore numerical simulation iron casting sand core RESIN
在线阅读 下载PDF
Influence law of pore water storage characteristics on the gas adsorption characteristics of coal
16
作者 Aikun Chen Cheng Zhai +6 位作者 Yuliang Cai Yong Sun Xu Yu Jizhao Xu Yuzhou Cong Yangfeng Zheng Wei Tang 《International Journal of Mining Science and Technology》 2025年第9期1461-1476,共16页
This study mainly investigates the influence of pore water characteristics on the adsorption properties of coalbed methane through integrated low field nuclear magnetic resonance(LF-NMR),adsorption experiments,and mol... This study mainly investigates the influence of pore water characteristics on the adsorption properties of coalbed methane through integrated low field nuclear magnetic resonance(LF-NMR),adsorption experiments,and molecular dynamics(MD)simulations.Pore water states in three coal ranks were characterized during progressive hydration.Multi-scale analysis revealed how pore water evolution regulates methane adsorption processes.During the diffusion-dominated stage(M2-M3),adsorbed water penetrates into the micropores.In the highly wettable brown coal(L1),the adsorbed water content reaches 2.12 g while in the anthracite(A1),it is only 0.29 g.During the active water injection stage(M4-M6),non-adsorbed water dominates in anthracite(over 85%of the total water content of 4.01 g),while adsorbed water remains dominant in lignite(over 60%of the total water content of 3.52 g).Water content plays a key role in methane adsorption in coal.During the water addition phase,the influence of methane adsorption on medium-to-low-rank coal is relatively weak,while the methane adsorption capacity of high-rank coal A1 shows a significant decrease during both the water diffusion and water addition phases,corresponding to a reduction in Langmuir volume of 21.22 cm^(3)/g.Molecular dynamics(MD)results further show that the free energy between molecules on the surface of hydroxyl-modified coal increases,with hydroxyl groups driving electrostatic interactions between coal and water molecules.Increased steric hindrance inhibits hydrogen bond formation and reduces the rate of hydrogen bond growth.There is a significant correlation between pore water content and coal-water molecular interaction energy,which cross-scale validates the results of LF-NMR testing and MD simulations. 展开更多
关键词 Coal rank pore water storage Gas adsorption Langmuir-like Competitive adsorption Cross-scale
在线阅读 下载PDF
Comprehensive Understanding of Closed Pores in Hard Carbon Anode for High-Energy Sodium-Ion Batteries
17
作者 Siyang Gan Yujie Huang +9 位作者 Ningyun Hong Yinghao Zhang Bo Xiong Zhi Zheng Zidong He Shengrui Gao Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 2025年第12期679-731,共53页
Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of ... Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure-performance relationship,which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores.An irrational construction methodology of closed pores inevitably results in diminished plateau capacity,which severely restricts the practical application of HC in high-energy-density scenarios.This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores,offering critical insights into their structural characteristics and formation pathways.Subsequently,by correlating lattice parameters with defect configurations,the structure-performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established.Furthermore,pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC.It is imperative to emphasize that adopting a molecular-level perspective,coupled with a synergistic kinetic/thermodynamic approach,is critical for understanding and controlling the transformation process from open pores to closed pores.These innovative perspectives are strategically designed to accelerate the commercialization of HC,thereby catalyzing the sustainable and high-efficiency development of SIBs. 展开更多
关键词 Hard carbon Closed pores ANODE Sodium-ion batteries High energy density
在线阅读 下载PDF
Effect of membrane material and pore size on membrane fouling during filtration of algae-laden water
18
作者 Shan-shan Gao Xin-hong Zhang +1 位作者 Ming-yue Geng Jia-yu Tian 《Water Science and Engineering》 2025年第3期335-344,共10页
Membrane filtration technology has been widely utilized for microalgae harvesting due to its stability and high efficiency.However,this technology faces challenges posed by membrane fouling caused by algal cells and e... Membrane filtration technology has been widely utilized for microalgae harvesting due to its stability and high efficiency.However,this technology faces challenges posed by membrane fouling caused by algal cells and extracellular organic matter(EOM),which are significantly influenced by membrane material and pore size.This study compared the fouling behavior of polyvinylidene fluoride(PVDF)membranes and ceramic membranes with similar pore sizes(0.20 mm and 0.16 mm,respectively)during the filtration of Microcystis aeruginosa.The ceramic membrane exhibited a lower transmembrane pressure(TMP)growth rate and reduced accumulation of surface foulants compared to the PVDF membrane,indicating its greater suitability for filtering algae-laden water.Further investigations employed membranes fabricated from aluminum oxide powders with grain sizes of 1 mm,3 mm,8 mm,and 10 mm,corresponding to membrane pore sizes of 0.08 mm,0.16 mm,0.66 mm,and 0.76 mm,respectively,to assess the impact of pore size on ceramic membrane fouling.The results revealed that increasing membrane pore size significantly lowered the TMP growth rate and reduced the irreversibility of membrane fouling.The extended DerjaguineLandaueVerweyeOverbeek(XDLVO)analysis indicated that large pore sizes enhanced repulsion between the ceramic membrane and algal foulants,further alleviating membrane fouling.This investigation offers new insights into optimizing membrane material and pore size for efficient filtration of algae-laden water. 展开更多
关键词 PVDF membrane Ceramic membrane pore size Membrane fouling Algae-laden water
在线阅读 下载PDF
Dual Control of Macrolithotype and Coal Structure on the Pore Parameters of Middle Jurassic Coals in the Southern Junggar Basin,NW China
19
作者 HOU Haihai LIANG Guodong +2 位作者 SHAO Longyi TANG Yue YAN Zhifeng 《Acta Geologica Sinica(English Edition)》 2025年第1期194-211,共18页
Coal pore parameters are closely related to macrolithotypes and coal structures,having a large influence over the gas potential and productivity of coalbed methane(CBM).The Middle Jurassic Xishanyao Formation,located ... Coal pore parameters are closely related to macrolithotypes and coal structures,having a large influence over the gas potential and productivity of coalbed methane(CBM).The Middle Jurassic Xishanyao Formation,located in the southern Junggar Basin of northwestern China,has geological conditions with rich CBM resources.The 46 Xishanyao coal samples gathered from the drilling cores and coal mines cover 4 types of macrolithotypes(bright coal 1,semi-bright coal 2,semi-dull coal 3,and dull coal 4)and 2 types of coal structures(primary coal I and cataclastic coal II).Based on a range of pore testing experiments and analytical methods,the dual effects of different macrolithotypes and coal structures on pore structures were intensely studied.The results showed that the specific surface area(SSA)and total pore volume(TPV)of coal samples increased gradually from bright to dull coals.For the same macrolithotypes,the SSA and TPV of the primary coals were lower than those of the cataclastic coals.Generally,the pore structures of bright and semi-bright coals are simpler when compared to semi-dull and dull coals with the same coal structure,whereas cataclastic coals have more complicated pore structure systems than primary coals with the same macrolithotypes.The bright and semi-bright coals have higher vitrinite contents and more endogenous fractures,whereas well-developed structural fractures were identified in cataclastic coals.Therefore,bright and semi-bright coals have better pore connectivity than semi-dull and dull coals with the same coal structure,the pore connectivity of cataclastic coals being slightly better than that of primary coals under the same macrolithotypes.In terms of the CBM adsorption conditions,the eight type samples formed a descending order:Ⅱ-4>I-4>Ⅱ-3>Ⅰ-3>Ⅱ-2>Ⅰ-2>Ⅱ-1>Ⅰ-1,while they ranked as follows when consideration was given to the CBM seepage capacities:II-2>Ⅱ-1>Ⅰ-2>Ⅰ-1>Ⅰ-3>Ⅰ-4>Ⅱ-3>Ⅱ-4.As a result,it could be determined that the bright and semi-bright coals had stronger adsorption capacities,whereas the cataclastic coals had better pore connectivity and seepage capacities.Pore structure characteristics should be analysed under the dual control of different macrolithotypes and coal structures,so that they can provide greater value for guiding CBM exploration and exploitation,as along for preventing underground gas accidents. 展开更多
关键词 coalbed methane macrolithotype coal structure pore structure Southern Junggar Basin
在线阅读 下载PDF
Analytical Modeling and Comparative Analysis of Capillary Imbibition in Shale Pores of Various Geometries
20
作者 Jin Xue Boyun Guo 《Computer Modeling in Engineering & Sciences》 2025年第9期3307-3328,共22页
Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study establis... Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models.These models include circular,square,and equilateral triangular capillaries;a triangular star-shaped cross-section formed by three tangent spherical particles;and a traditional porous medium representation method.All these models are derived based on Newton’s second law,where capillary pressure is described by the Young-Laplace equation and viscous resistance is characterized by the Hagen-Poiret equation and Darcy’s law.All derived models predict that the fluid imbibition distance is proportional to the square root of time,in accordance with the classical Lucas-Washburn law.However,different pore structures exhibit significantly different characteristic imbibition rates.Compared to the single pore model,the conventional Darcy’s law-based model for porous media predicts significantly lower imbibition rates,which is consistent with the relatively slower uptake rates in actual shale nanoscale pore networks.These findings emphasize the important role played by pore geometry in fluid imbibition dynamics and further point to the need for optimizing pore structure to extend fluid imbibition duration in shale reservoirs in practical operations. 展开更多
关键词 Spontaneous imbibition capillary flow pore geometry triangular-star channel analytical model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部