This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Tradi...This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Traditional tool monitoring methods that rely on empirical knowledge or limited mathematical models struggle to adapt to complex and dynamic machining environments.To address this,we implement real-time tool condition recognition by introducing deep learning technology.Aiming to the insufficient recognition accuracy,we propose a pyramid pooling-based vision Transformer network(P2ViT-Net)method for tool condition recognition.Using images as input effectively mitigates the issue of low-dimensional signal features.We enhance the vision Transformer(ViT)framework for image classification by developing the P2ViT model and adapt it to tool condition recognition.Experimental results demonstrate that our improved P2ViT model achieves 94.4%recognition accuracy,showing a 10%improvement over conventional ViT and outperforming all comparative convolutional neural network models.展开更多
With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhan...With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhancing public safety.However,traditional methods typically process images and text separately,applying upstream models directly to downstream tasks.This approach significantly increases the complexity ofmodel training and computational costs.Furthermore,the common class imbalance in existing training datasets limitsmodel performance improvement.To address these challenges,we propose an innovative framework named Person Re-ID Network Based on Visual Prompt Technology andMulti-Instance Negative Pooling(VPM-Net).First,we incorporate the Contrastive Language-Image Pre-training(CLIP)pre-trained model to accurately map visual and textual features into a unified embedding space,effectively mitigating inconsistencies in data distribution and the training process.To enhancemodel adaptability and generalization,we introduce an efficient and task-specific Visual Prompt Tuning(VPT)technique,which improves the model’s relevance to specific tasks.Additionally,we design two key modules:the Knowledge-Aware Network(KAN)and theMulti-Instance Negative Pooling(MINP)module.The KAN module significantly enhances the model’s understanding of complex scenarios through deep contextual semantic modeling.MINP module handles samples,effectively improving the model’s ability to distinguish fine-grained features.The experimental outcomes across diverse datasets underscore the remarkable performance of VPM-Net.These results vividly demonstrate the unique advantages and robust reliability of VPM-Net in fine-grained retrieval tasks.展开更多
In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convoluti...In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convolutional neural networks,making the neural network more efficient.Maximum pooling,average pooling,and minimum pooling methods are generally used in convolutional neural networks.However,these pooling methods are not suitable for all datasets used in neural network applications.In this study,a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks.This method,which we call MAM(Maximum Average Minimum)pooling,is more interactive than other traditional maximum pooling,average pooling,and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value.The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks.To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods,training was carried out on the LeNet-5 model using CIFAR-10,CIFAR-100,and MNIST datasets.According to the results obtained,the proposed MAM pooling method performed better than the maximum pooling,average pooling,and minimum pooling methods in all pool sizes on three different datasets.展开更多
Aiming at the problem of low surface defect detection accuracy of industrial products, an object detection method based on simplified spatial pyramid pooling fast(Sim SPPF) hybrid pooling improved you only look once v...Aiming at the problem of low surface defect detection accuracy of industrial products, an object detection method based on simplified spatial pyramid pooling fast(Sim SPPF) hybrid pooling improved you only look once version 5s(YOLOV5s) model is proposed. The algorithm introduces channel attention(CA) module, simplified SPPF feature vector pyramid and efficient intersection over union(EIOU) loss function. Feature vector pyramids fuse high-dimensional and low-dimensional features, which makes semantic information richer. The CA mechanism performs maximum pooling and average pooling operations on the feature map. Hybrid pooling comprehensively improves detection computing efficiency and accurate deployment ability. The results show that the improved YOLOV5s model is better than the original YOLOV5s model. The average test accuracy(mAP) can reach 91.8%, which can be increased by 17.4%, and the detection speed can reach 108 FPS, which can be increased by 18 FPS. The improved model is practicable, and the overall performance is better than other conventional models.展开更多
The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely u...The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective.展开更多
Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and...Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and disadvantages in different operational environments.This paper uses the M/M/1 and M/M/2 queues to study the impact of pooling,specialization,and discretionary task completion on the average queue length.Closed-form solutions for the average M/M/2 queue length are derived.Computational examples illustrate how the average queue length changes with the strength of pooling,specialization,and discretionary task completion.Finally,several conjectures are made in the paper.展开更多
Convolutional Neural Networks(CNNs)have shown remarkable capabilities in extracting local features from images,yet they often overlook the underlying relationships between pixels.To address this limitation,previous ap...Convolutional Neural Networks(CNNs)have shown remarkable capabilities in extracting local features from images,yet they often overlook the underlying relationships between pixels.To address this limitation,previous approaches have attempted to combine CNNs with Graph Convolutional Networks(GCNs)to capture global features.However,these approaches typically neglect the topological structure information of the graph during the global feature extraction stage.This paper proposes a novel end-to-end hybrid architecture called the Multi-Graph Pooling Network(MGPN),which is designed explicitly for chest X-ray image classification.Our approach sequentially combines CNNs and GCNs,enabling the learning of both local and global features from individual images.Recognizing that different nodes contribute differently to the final graph representation,we introduce an NI-GTP module to enhance the extraction of ultimate global features.Additionally,we introduce a G-LFF module to fuse the local and global features effectively.展开更多
In order to enhance the performance of the CNN-based segmentation models for bone metastases, this study proposes a segmentation method that integrates dual-pooling, DAC, and RMP modules. The network consists of disti...In order to enhance the performance of the CNN-based segmentation models for bone metastases, this study proposes a segmentation method that integrates dual-pooling, DAC, and RMP modules. The network consists of distinct feature encoding and decoding stages, with dual-pooling modules employed in encoding stages to maintain the background information needed for bone scintigrams diagnosis. Both the DAC and RMP modules are utilized in the bottleneck layer to address the multi-scale problem of metastatic lesions. Experimental evaluations on 306 clinical SPECT data have demonstrated that the proposed method showcases a substantial improvement in both DSC and Recall scores by 3.28% and 6.55% compared the baseline. Exhaustive case studies illustrate the superiority of the methodology.展开更多
In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of ...In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.展开更多
(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognitio...(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognition.(Methods)521 subjects yield 1164 slice images via the slice level selection method.All the 1164 slice images comprise four categories:COVID-19 positive;community-acquired pneumonia;second pulmonary tuberculosis;and healthy control.Our method firstly introduced an improved multiple-way data augmentation.Secondly,an n-conv rankbased average pooling module(NRAPM)was proposed in which rank-based pooling—particularly,rank-based average pooling(RAP)—was employed to avoid overfitting.Third,a novel DRAPNet was proposed based on NRAPM and inspired by the VGGnetwork.Grad-CAM was used to generate heatmaps and gave our AI model an explainable analysis.(Results)Our DRAPNet achieved a micro-averaged F1 score of 95.49%by 10 runs over the test set.The sensitivities of the four classes were 95.44%,96.07%,94.41%,and 96.07%,respectively.The precisions of four classes were 96.45%,95.22%,95.05%,and 95.28%,respectively.The F1 scores of the four classes were 95.94%,95.64%,94.73%,and 95.67%,respectively.Besides,the confusion matrix was given.(Conclusions)The DRAPNet is effective in diagnosing COVID-19 and other chest infectious diseases.The RAP gives better results than four other methods:strided convolution,l2-norm pooling,average pooling,and max pooling.展开更多
基金supported by China Postdoctoral Science Foundation(No.2024M754122)the Postdoctoral Fellowship Programof CPSF(No.GZB20240972)+3 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2024ZB194)Natural Science Foundation of Jiangsu Province(No.BK20241389)Basic Science ResearchFund of China(No.JCKY2023203C026)2024 Jiangsu Province Talent Programme Qinglan Project.
文摘This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Traditional tool monitoring methods that rely on empirical knowledge or limited mathematical models struggle to adapt to complex and dynamic machining environments.To address this,we implement real-time tool condition recognition by introducing deep learning technology.Aiming to the insufficient recognition accuracy,we propose a pyramid pooling-based vision Transformer network(P2ViT-Net)method for tool condition recognition.Using images as input effectively mitigates the issue of low-dimensional signal features.We enhance the vision Transformer(ViT)framework for image classification by developing the P2ViT model and adapt it to tool condition recognition.Experimental results demonstrate that our improved P2ViT model achieves 94.4%recognition accuracy,showing a 10%improvement over conventional ViT and outperforming all comparative convolutional neural network models.
基金funded by the Key Research and Development Program of Hubei Province,China(Grant No.2023BEB024)the Young and Middle-aged Scientific and Technological Innova-tion Team Plan in Higher Education Institutions inHubei Province,China(GrantNo.T2023007)the key projects ofHubei Provincial Department of Education(No.D20161403).
文摘With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhancing public safety.However,traditional methods typically process images and text separately,applying upstream models directly to downstream tasks.This approach significantly increases the complexity ofmodel training and computational costs.Furthermore,the common class imbalance in existing training datasets limitsmodel performance improvement.To address these challenges,we propose an innovative framework named Person Re-ID Network Based on Visual Prompt Technology andMulti-Instance Negative Pooling(VPM-Net).First,we incorporate the Contrastive Language-Image Pre-training(CLIP)pre-trained model to accurately map visual and textual features into a unified embedding space,effectively mitigating inconsistencies in data distribution and the training process.To enhancemodel adaptability and generalization,we introduce an efficient and task-specific Visual Prompt Tuning(VPT)technique,which improves the model’s relevance to specific tasks.Additionally,we design two key modules:the Knowledge-Aware Network(KAN)and theMulti-Instance Negative Pooling(MINP)module.The KAN module significantly enhances the model’s understanding of complex scenarios through deep contextual semantic modeling.MINP module handles samples,effectively improving the model’s ability to distinguish fine-grained features.The experimental outcomes across diverse datasets underscore the remarkable performance of VPM-Net.These results vividly demonstrate the unique advantages and robust reliability of VPM-Net in fine-grained retrieval tasks.
文摘In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convolutional neural networks,making the neural network more efficient.Maximum pooling,average pooling,and minimum pooling methods are generally used in convolutional neural networks.However,these pooling methods are not suitable for all datasets used in neural network applications.In this study,a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks.This method,which we call MAM(Maximum Average Minimum)pooling,is more interactive than other traditional maximum pooling,average pooling,and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value.The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks.To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods,training was carried out on the LeNet-5 model using CIFAR-10,CIFAR-100,and MNIST datasets.According to the results obtained,the proposed MAM pooling method performed better than the maximum pooling,average pooling,and minimum pooling methods in all pool sizes on three different datasets.
基金supported by the Tianjin Postgraduate Research Innovation Project (No.2022SKY286)the National Science and the National Key Research and Development Program (No.2022YFF0706000)。
文摘Aiming at the problem of low surface defect detection accuracy of industrial products, an object detection method based on simplified spatial pyramid pooling fast(Sim SPPF) hybrid pooling improved you only look once version 5s(YOLOV5s) model is proposed. The algorithm introduces channel attention(CA) module, simplified SPPF feature vector pyramid and efficient intersection over union(EIOU) loss function. Feature vector pyramids fuse high-dimensional and low-dimensional features, which makes semantic information richer. The CA mechanism performs maximum pooling and average pooling operations on the feature map. Hybrid pooling comprehensively improves detection computing efficiency and accurate deployment ability. The results show that the improved YOLOV5s model is better than the original YOLOV5s model. The average test accuracy(mAP) can reach 91.8%, which can be increased by 17.4%, and the detection speed can reach 108 FPS, which can be increased by 18 FPS. The improved model is practicable, and the overall performance is better than other conventional models.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011244).
文摘The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective.
文摘Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and disadvantages in different operational environments.This paper uses the M/M/1 and M/M/2 queues to study the impact of pooling,specialization,and discretionary task completion on the average queue length.Closed-form solutions for the average M/M/2 queue length are derived.Computational examples illustrate how the average queue length changes with the strength of pooling,specialization,and discretionary task completion.Finally,several conjectures are made in the paper.
基金supported by the National Natural Science Foundation of China(62276092,62303167)Key Science and Technology Program of Henan Province(212102310084)+11 种基金MRC(MC_PC_17171)Royal Society(RP202G0230)BHF(AA/18/3/34220)Hope Foundation for Cancer Research(RM60G0680)GCRF(P202PF11).Sino-UK Industrial Fund(RP202G0289)LIAS(P202ED10,P202RE969)Key Scientific Research Projects of Colleges and Universities in Henan Province(25A520009)Data Science Enhancement Fund(P202RE237)Fight for Sight(24NN201)Sino-UK Education Fund(OP202006)BBSRC(RM32G0178B8).
文摘Convolutional Neural Networks(CNNs)have shown remarkable capabilities in extracting local features from images,yet they often overlook the underlying relationships between pixels.To address this limitation,previous approaches have attempted to combine CNNs with Graph Convolutional Networks(GCNs)to capture global features.However,these approaches typically neglect the topological structure information of the graph during the global feature extraction stage.This paper proposes a novel end-to-end hybrid architecture called the Multi-Graph Pooling Network(MGPN),which is designed explicitly for chest X-ray image classification.Our approach sequentially combines CNNs and GCNs,enabling the learning of both local and global features from individual images.Recognizing that different nodes contribute differently to the final graph representation,we introduce an NI-GTP module to enhance the extraction of ultimate global features.Additionally,we introduce a G-LFF module to fuse the local and global features effectively.
文摘In order to enhance the performance of the CNN-based segmentation models for bone metastases, this study proposes a segmentation method that integrates dual-pooling, DAC, and RMP modules. The network consists of distinct feature encoding and decoding stages, with dual-pooling modules employed in encoding stages to maintain the background information needed for bone scintigrams diagnosis. Both the DAC and RMP modules are utilized in the bottleneck layer to address the multi-scale problem of metastatic lesions. Experimental evaluations on 306 clinical SPECT data have demonstrated that the proposed method showcases a substantial improvement in both DSC and Recall scores by 3.28% and 6.55% compared the baseline. Exhaustive case studies illustrate the superiority of the methodology.
基金supported by the National Natural Science Foundation of China(71401052)the Fundamental Research Funds for the Central Universities(2019B19514)。
文摘In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.
基金This study is partially supported by the Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)Royal Society International Exchanges Cost Share Award,UK(RP202G0230)+3 种基金Hope Foundation for Cancer Research,UK(RM60G0680)British Heart Foundation Accelerator Award,UKSino-UK Industrial Fund,UK(RP202G0289)Global Challenges Research Fund(GCRF),UK(P202PF11).We thank Dr.Hemil Patel for his help in English correction.
文摘(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognition.(Methods)521 subjects yield 1164 slice images via the slice level selection method.All the 1164 slice images comprise four categories:COVID-19 positive;community-acquired pneumonia;second pulmonary tuberculosis;and healthy control.Our method firstly introduced an improved multiple-way data augmentation.Secondly,an n-conv rankbased average pooling module(NRAPM)was proposed in which rank-based pooling—particularly,rank-based average pooling(RAP)—was employed to avoid overfitting.Third,a novel DRAPNet was proposed based on NRAPM and inspired by the VGGnetwork.Grad-CAM was used to generate heatmaps and gave our AI model an explainable analysis.(Results)Our DRAPNet achieved a micro-averaged F1 score of 95.49%by 10 runs over the test set.The sensitivities of the four classes were 95.44%,96.07%,94.41%,and 96.07%,respectively.The precisions of four classes were 96.45%,95.22%,95.05%,and 95.28%,respectively.The F1 scores of the four classes were 95.94%,95.64%,94.73%,and 95.67%,respectively.Besides,the confusion matrix was given.(Conclusions)The DRAPNet is effective in diagnosing COVID-19 and other chest infectious diseases.The RAP gives better results than four other methods:strided convolution,l2-norm pooling,average pooling,and max pooling.