Edge deployment solutions based on convolutional neural networks(CNNs)have garnered significant attention because of their potential applications.However,traditional CNNs rely on pooling to reduce the feature size,lea...Edge deployment solutions based on convolutional neural networks(CNNs)have garnered significant attention because of their potential applications.However,traditional CNNs rely on pooling to reduce the feature size,leading to substantial information loss and reduced network robustness.Herein,we propose a more robust adaptive pooling network(APN)method implemented using memristor technology.Our method introduces an improved pooling layer that reduces input features to an arbitrary scale without compromising their importance.Different coupling coefficients of the pooling layer are stored as conductance values in arrays.We validate the proposed APN on generic datasets,demonstrating significant performance improvements over previously reported CNN architectures.Additionally,we evaluate the APN on a CAPTCHA recognition task with perturbations to assess network robustness.The results show that the APN achieves 92.6% accuracy in 4-digit CAPTCHA recognition and exhibits higher robustness.This brief presents a highly robust and novel scheme for edge computing using memristor technology.展开更多
This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Tradi...This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Traditional tool monitoring methods that rely on empirical knowledge or limited mathematical models struggle to adapt to complex and dynamic machining environments.To address this,we implement real-time tool condition recognition by introducing deep learning technology.Aiming to the insufficient recognition accuracy,we propose a pyramid pooling-based vision Transformer network(P2ViT-Net)method for tool condition recognition.Using images as input effectively mitigates the issue of low-dimensional signal features.We enhance the vision Transformer(ViT)framework for image classification by developing the P2ViT model and adapt it to tool condition recognition.Experimental results demonstrate that our improved P2ViT model achieves 94.4%recognition accuracy,showing a 10%improvement over conventional ViT and outperforming all comparative convolutional neural network models.展开更多
With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhan...With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhancing public safety.However,traditional methods typically process images and text separately,applying upstream models directly to downstream tasks.This approach significantly increases the complexity ofmodel training and computational costs.Furthermore,the common class imbalance in existing training datasets limitsmodel performance improvement.To address these challenges,we propose an innovative framework named Person Re-ID Network Based on Visual Prompt Technology andMulti-Instance Negative Pooling(VPM-Net).First,we incorporate the Contrastive Language-Image Pre-training(CLIP)pre-trained model to accurately map visual and textual features into a unified embedding space,effectively mitigating inconsistencies in data distribution and the training process.To enhancemodel adaptability and generalization,we introduce an efficient and task-specific Visual Prompt Tuning(VPT)technique,which improves the model’s relevance to specific tasks.Additionally,we design two key modules:the Knowledge-Aware Network(KAN)and theMulti-Instance Negative Pooling(MINP)module.The KAN module significantly enhances the model’s understanding of complex scenarios through deep contextual semantic modeling.MINP module handles samples,effectively improving the model’s ability to distinguish fine-grained features.The experimental outcomes across diverse datasets underscore the remarkable performance of VPM-Net.These results vividly demonstrate the unique advantages and robust reliability of VPM-Net in fine-grained retrieval tasks.展开更多
In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of ...In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.展开更多
(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognitio...(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognition.(Methods)521 subjects yield 1164 slice images via the slice level selection method.All the 1164 slice images comprise four categories:COVID-19 positive;community-acquired pneumonia;second pulmonary tuberculosis;and healthy control.Our method firstly introduced an improved multiple-way data augmentation.Secondly,an n-conv rankbased average pooling module(NRAPM)was proposed in which rank-based pooling—particularly,rank-based average pooling(RAP)—was employed to avoid overfitting.Third,a novel DRAPNet was proposed based on NRAPM and inspired by the VGGnetwork.Grad-CAM was used to generate heatmaps and gave our AI model an explainable analysis.(Results)Our DRAPNet achieved a micro-averaged F1 score of 95.49%by 10 runs over the test set.The sensitivities of the four classes were 95.44%,96.07%,94.41%,and 96.07%,respectively.The precisions of four classes were 96.45%,95.22%,95.05%,and 95.28%,respectively.The F1 scores of the four classes were 95.94%,95.64%,94.73%,and 95.67%,respectively.Besides,the confusion matrix was given.(Conclusions)The DRAPNet is effective in diagnosing COVID-19 and other chest infectious diseases.The RAP gives better results than four other methods:strided convolution,l2-norm pooling,average pooling,and max pooling.展开更多
In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convoluti...In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convolutional neural networks,making the neural network more efficient.Maximum pooling,average pooling,and minimum pooling methods are generally used in convolutional neural networks.However,these pooling methods are not suitable for all datasets used in neural network applications.In this study,a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks.This method,which we call MAM(Maximum Average Minimum)pooling,is more interactive than other traditional maximum pooling,average pooling,and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value.The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks.To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods,training was carried out on the LeNet-5 model using CIFAR-10,CIFAR-100,and MNIST datasets.According to the results obtained,the proposed MAM pooling method performed better than the maximum pooling,average pooling,and minimum pooling methods in all pool sizes on three different datasets.展开更多
The continuous increase of human mobility combined with a relevant use of private vehicles contributes to increase the ill effects of vehicle externalities on the environment, e.g. high levels of air pollution, toxic ...The continuous increase of human mobility combined with a relevant use of private vehicles contributes to increase the ill effects of vehicle externalities on the environment, e.g. high levels of air pollution, toxic emissions, noise pollution, and on the quality of life, e.g. parking problem, traffic congestion, and increase in the number of crashes and accidents. Transport demand management plays a very critical role in achieving greenhouse gas emission reduction targets. This study demonstrates that car pooling (CP) is an effective strategy to reduce transport volumes, transportation costs and related hill externalities in agreement with EU programs of emissions reduction targets. This paper presents an original approach to solve the CP problem. It is based on hierarchical clustering models, which have been adopted by an original decision support system (DSS). The DSS helps mobility managers to generate the pools and to design feasible paths for shared vehicles. A significant case studies and obtained results by the application of the proposed models are illustrated. They demonstrate the effectiveness of the approach and the supporting decisions tool.展开更多
To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combine...To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combined by this method, and then the results after combination are made pooling operation, three sorts of CNN models(we named TBCNN, MCT-CNN and MMCT-CNN respectively) are constructed and then corresponding algorithmic thought are detailed on this basis. Secondly, relevant experiments and analyses are respectively designed to show the effects of three key parameters(convolution kernel, combination kernel number and word embedding) on three kinds of CNN models and to further demonstrate the effect of the models proposed. The experimental results show that compared with the traditional method of text classification in CNNs, term-based pooling method is addressed that not only the availability of the way is proved, but also the performance shows good superiority.展开更多
Aim Alcoholism is a disease that a patient becomes dependent or addicted to alcohol.This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately.Methods We propose the ...Aim Alcoholism is a disease that a patient becomes dependent or addicted to alcohol.This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately.Methods We propose the VGG-Inspired stochastic pooling neural network(VISPNN)model based on three components:(i)a VGG-inspired mainstay network,(ii)the stochastic pooling technique,which aims to outperform traditional max pooling and average pooling,and(iii)an improved 20-way data augmentation(Gaussian noise,salt-and-pepper noise,speckle noise,Poisson noise,horizontal shear,vertical shear,rotation,Gamma correction,random translation,and scaling on both raw image and its horizontally mirrored image).In addition,two networks(Net-I and Net-II)are proposed in ablation studies.Net-I is based on VISPNN by replacing stochastic pooling with ordinary max pooling.Net-II removes the 20-way data augmentation.Results The results by ten runs of 10-fold cross-validation show that our VISPNN model gains a sensitivity of 97.98±1.32,a specificity of 97.80±1.35,a precision of 97.78±1.35,an accuracy of 97.89±1.11,an F1 score of 97.87±1.12,an MCC of 95.79±2.22,an FMI of 97.88±1.12,and an AUC of 0.9849,respectively.Conclusion The performance of our VISPNN model is better than two internal networks(Net-I and Net-II)and ten state-of-the-art alcoholism recognition methods.展开更多
BACKGROUND Multiple gastrointestinal stromal tumors(MGISTs)are a very rare type of gastrointestinal stromal tumor(GIST)and are usually observed in syndrome.AIM The paper aimed to describe the clinical and oncological ...BACKGROUND Multiple gastrointestinal stromal tumors(MGISTs)are a very rare type of gastrointestinal stromal tumor(GIST)and are usually observed in syndrome.AIM The paper aimed to describe the clinical and oncological features of MGISTs and to offer evidence for the diagnosis and treatment.METHODS Data of consecutive patients with MGISTs who were diagnosed at Peking University People’s Hospital(PKUPH)from 2008 to 2019 were retrospectively evaluated.Further,a literature search was conducted by retrieving data from PubMed,EMBASE,and the Cochrane library databases from inception up to November 30,2019.RESULTS In all,12 patients were diagnosed with MGISTs at PKUPH,and 43 published records were ultimately included following the literature review.Combined analysis of the whole individual patient data showed that female(59.30%),young(14.45%),and syndromic GIST(63.95%)patients comprised a large proportion of the total patient population.Tumors were mainly located in the small intestine(58.92%),and both CD117 and CD34 were generally positive.After a mean 78.32-mo follow-up,the estimated median overall survival duration(11.5 years)was similar to single GISTs,but recurrence-free survival was relatively poorer.CONCLUSION The clinical and oncological features are potentially different between MGISTs and single GIST.Further studies are needed to explore appropriate surgical approach and adjuvant therapy.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62274002,62304001,and 62201005)the Anhui Provincial Natural Science Foundation(Grant Nos.2308085QF213 and 2408085QF211)the Natural Science Research Project of the Anhui Educational Committee(Grant No.2023AH050072)。
文摘Edge deployment solutions based on convolutional neural networks(CNNs)have garnered significant attention because of their potential applications.However,traditional CNNs rely on pooling to reduce the feature size,leading to substantial information loss and reduced network robustness.Herein,we propose a more robust adaptive pooling network(APN)method implemented using memristor technology.Our method introduces an improved pooling layer that reduces input features to an arbitrary scale without compromising their importance.Different coupling coefficients of the pooling layer are stored as conductance values in arrays.We validate the proposed APN on generic datasets,demonstrating significant performance improvements over previously reported CNN architectures.Additionally,we evaluate the APN on a CAPTCHA recognition task with perturbations to assess network robustness.The results show that the APN achieves 92.6% accuracy in 4-digit CAPTCHA recognition and exhibits higher robustness.This brief presents a highly robust and novel scheme for edge computing using memristor technology.
基金supported by China Postdoctoral Science Foundation(No.2024M754122)the Postdoctoral Fellowship Programof CPSF(No.GZB20240972)+3 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2024ZB194)Natural Science Foundation of Jiangsu Province(No.BK20241389)Basic Science ResearchFund of China(No.JCKY2023203C026)2024 Jiangsu Province Talent Programme Qinglan Project.
文摘This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Traditional tool monitoring methods that rely on empirical knowledge or limited mathematical models struggle to adapt to complex and dynamic machining environments.To address this,we implement real-time tool condition recognition by introducing deep learning technology.Aiming to the insufficient recognition accuracy,we propose a pyramid pooling-based vision Transformer network(P2ViT-Net)method for tool condition recognition.Using images as input effectively mitigates the issue of low-dimensional signal features.We enhance the vision Transformer(ViT)framework for image classification by developing the P2ViT model and adapt it to tool condition recognition.Experimental results demonstrate that our improved P2ViT model achieves 94.4%recognition accuracy,showing a 10%improvement over conventional ViT and outperforming all comparative convolutional neural network models.
基金funded by the Key Research and Development Program of Hubei Province,China(Grant No.2023BEB024)the Young and Middle-aged Scientific and Technological Innova-tion Team Plan in Higher Education Institutions inHubei Province,China(GrantNo.T2023007)the key projects ofHubei Provincial Department of Education(No.D20161403).
文摘With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhancing public safety.However,traditional methods typically process images and text separately,applying upstream models directly to downstream tasks.This approach significantly increases the complexity ofmodel training and computational costs.Furthermore,the common class imbalance in existing training datasets limitsmodel performance improvement.To address these challenges,we propose an innovative framework named Person Re-ID Network Based on Visual Prompt Technology andMulti-Instance Negative Pooling(VPM-Net).First,we incorporate the Contrastive Language-Image Pre-training(CLIP)pre-trained model to accurately map visual and textual features into a unified embedding space,effectively mitigating inconsistencies in data distribution and the training process.To enhancemodel adaptability and generalization,we introduce an efficient and task-specific Visual Prompt Tuning(VPT)technique,which improves the model’s relevance to specific tasks.Additionally,we design two key modules:the Knowledge-Aware Network(KAN)and theMulti-Instance Negative Pooling(MINP)module.The KAN module significantly enhances the model’s understanding of complex scenarios through deep contextual semantic modeling.MINP module handles samples,effectively improving the model’s ability to distinguish fine-grained features.The experimental outcomes across diverse datasets underscore the remarkable performance of VPM-Net.These results vividly demonstrate the unique advantages and robust reliability of VPM-Net in fine-grained retrieval tasks.
基金supported by the National Natural Science Foundation of China(71401052)the Fundamental Research Funds for the Central Universities(2019B19514)。
文摘In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.
基金This study is partially supported by the Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)Royal Society International Exchanges Cost Share Award,UK(RP202G0230)+3 种基金Hope Foundation for Cancer Research,UK(RM60G0680)British Heart Foundation Accelerator Award,UKSino-UK Industrial Fund,UK(RP202G0289)Global Challenges Research Fund(GCRF),UK(P202PF11).We thank Dr.Hemil Patel for his help in English correction.
文摘(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognition.(Methods)521 subjects yield 1164 slice images via the slice level selection method.All the 1164 slice images comprise four categories:COVID-19 positive;community-acquired pneumonia;second pulmonary tuberculosis;and healthy control.Our method firstly introduced an improved multiple-way data augmentation.Secondly,an n-conv rankbased average pooling module(NRAPM)was proposed in which rank-based pooling—particularly,rank-based average pooling(RAP)—was employed to avoid overfitting.Third,a novel DRAPNet was proposed based on NRAPM and inspired by the VGGnetwork.Grad-CAM was used to generate heatmaps and gave our AI model an explainable analysis.(Results)Our DRAPNet achieved a micro-averaged F1 score of 95.49%by 10 runs over the test set.The sensitivities of the four classes were 95.44%,96.07%,94.41%,and 96.07%,respectively.The precisions of four classes were 96.45%,95.22%,95.05%,and 95.28%,respectively.The F1 scores of the four classes were 95.94%,95.64%,94.73%,and 95.67%,respectively.Besides,the confusion matrix was given.(Conclusions)The DRAPNet is effective in diagnosing COVID-19 and other chest infectious diseases.The RAP gives better results than four other methods:strided convolution,l2-norm pooling,average pooling,and max pooling.
文摘In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convolutional neural networks,making the neural network more efficient.Maximum pooling,average pooling,and minimum pooling methods are generally used in convolutional neural networks.However,these pooling methods are not suitable for all datasets used in neural network applications.In this study,a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks.This method,which we call MAM(Maximum Average Minimum)pooling,is more interactive than other traditional maximum pooling,average pooling,and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value.The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks.To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods,training was carried out on the LeNet-5 model using CIFAR-10,CIFAR-100,and MNIST datasets.According to the results obtained,the proposed MAM pooling method performed better than the maximum pooling,average pooling,and minimum pooling methods in all pool sizes on three different datasets.
文摘The continuous increase of human mobility combined with a relevant use of private vehicles contributes to increase the ill effects of vehicle externalities on the environment, e.g. high levels of air pollution, toxic emissions, noise pollution, and on the quality of life, e.g. parking problem, traffic congestion, and increase in the number of crashes and accidents. Transport demand management plays a very critical role in achieving greenhouse gas emission reduction targets. This study demonstrates that car pooling (CP) is an effective strategy to reduce transport volumes, transportation costs and related hill externalities in agreement with EU programs of emissions reduction targets. This paper presents an original approach to solve the CP problem. It is based on hierarchical clustering models, which have been adopted by an original decision support system (DSS). The DSS helps mobility managers to generate the pools and to design feasible paths for shared vehicles. A significant case studies and obtained results by the application of the proposed models are illustrated. They demonstrate the effectiveness of the approach and the supporting decisions tool.
文摘To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combined by this method, and then the results after combination are made pooling operation, three sorts of CNN models(we named TBCNN, MCT-CNN and MMCT-CNN respectively) are constructed and then corresponding algorithmic thought are detailed on this basis. Secondly, relevant experiments and analyses are respectively designed to show the effects of three key parameters(convolution kernel, combination kernel number and word embedding) on three kinds of CNN models and to further demonstrate the effect of the models proposed. The experimental results show that compared with the traditional method of text classification in CNNs, term-based pooling method is addressed that not only the availability of the way is proved, but also the performance shows good superiority.
基金This paper is partially supported by the Royal Society International Exchanges Cost Share Award,UK(RP202G0230)Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)+3 种基金Hope Foundation for Cancer Research,UK(RM60G0680)British Heart Foundation Accelerator Award,UKSino-UK Industrial Fund,UK(RP202G0289)Global Challenges Research Fund(GCRF),UK(P202PF11).In addition,we acknowledge the help of Dr.Hemil Patel and Dr.Qinghua Zhou for their help in English correction.
文摘Aim Alcoholism is a disease that a patient becomes dependent or addicted to alcohol.This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately.Methods We propose the VGG-Inspired stochastic pooling neural network(VISPNN)model based on three components:(i)a VGG-inspired mainstay network,(ii)the stochastic pooling technique,which aims to outperform traditional max pooling and average pooling,and(iii)an improved 20-way data augmentation(Gaussian noise,salt-and-pepper noise,speckle noise,Poisson noise,horizontal shear,vertical shear,rotation,Gamma correction,random translation,and scaling on both raw image and its horizontally mirrored image).In addition,two networks(Net-I and Net-II)are proposed in ablation studies.Net-I is based on VISPNN by replacing stochastic pooling with ordinary max pooling.Net-II removes the 20-way data augmentation.Results The results by ten runs of 10-fold cross-validation show that our VISPNN model gains a sensitivity of 97.98±1.32,a specificity of 97.80±1.35,a precision of 97.78±1.35,an accuracy of 97.89±1.11,an F1 score of 97.87±1.12,an MCC of 95.79±2.22,an FMI of 97.88±1.12,and an AUC of 0.9849,respectively.Conclusion The performance of our VISPNN model is better than two internal networks(Net-I and Net-II)and ten state-of-the-art alcoholism recognition methods.
文摘BACKGROUND Multiple gastrointestinal stromal tumors(MGISTs)are a very rare type of gastrointestinal stromal tumor(GIST)and are usually observed in syndrome.AIM The paper aimed to describe the clinical and oncological features of MGISTs and to offer evidence for the diagnosis and treatment.METHODS Data of consecutive patients with MGISTs who were diagnosed at Peking University People’s Hospital(PKUPH)from 2008 to 2019 were retrospectively evaluated.Further,a literature search was conducted by retrieving data from PubMed,EMBASE,and the Cochrane library databases from inception up to November 30,2019.RESULTS In all,12 patients were diagnosed with MGISTs at PKUPH,and 43 published records were ultimately included following the literature review.Combined analysis of the whole individual patient data showed that female(59.30%),young(14.45%),and syndromic GIST(63.95%)patients comprised a large proportion of the total patient population.Tumors were mainly located in the small intestine(58.92%),and both CD117 and CD34 were generally positive.After a mean 78.32-mo follow-up,the estimated median overall survival duration(11.5 years)was similar to single GISTs,but recurrence-free survival was relatively poorer.CONCLUSION The clinical and oncological features are potentially different between MGISTs and single GIST.Further studies are needed to explore appropriate surgical approach and adjuvant therapy.