期刊文献+
共找到969篇文章
< 1 2 49 >
每页显示 20 50 100
Brain-inspired memristive pooling method for enhanced edge computing
1
作者 Wenbin Guo Zhe Feng +6 位作者 Haochen Wang Zhihao Lin Jianxun Zou Zuyu Xu Yunlai Zhu Yuehua Dai Zuheng Wu 《Chinese Physics B》 2025年第12期406-413,共8页
Edge deployment solutions based on convolutional neural networks(CNNs)have garnered significant attention because of their potential applications.However,traditional CNNs rely on pooling to reduce the feature size,lea... Edge deployment solutions based on convolutional neural networks(CNNs)have garnered significant attention because of their potential applications.However,traditional CNNs rely on pooling to reduce the feature size,leading to substantial information loss and reduced network robustness.Herein,we propose a more robust adaptive pooling network(APN)method implemented using memristor technology.Our method introduces an improved pooling layer that reduces input features to an arbitrary scale without compromising their importance.Different coupling coefficients of the pooling layer are stored as conductance values in arrays.We validate the proposed APN on generic datasets,demonstrating significant performance improvements over previously reported CNN architectures.Additionally,we evaluate the APN on a CAPTCHA recognition task with perturbations to assess network robustness.The results show that the APN achieves 92.6% accuracy in 4-digit CAPTCHA recognition and exhibits higher robustness.This brief presents a highly robust and novel scheme for edge computing using memristor technology. 展开更多
关键词 MEMRISTOR edge computing adaptive pooling image classification
原文传递
Pyramid Pooling-Based Vision Transformer for Tool Condition Recognition
2
作者 ZHENG Kun LI Yonglin +2 位作者 GU Xinyan DING Zhiying ZHU Haihua 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期322-336,共15页
This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Tradi... This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Traditional tool monitoring methods that rely on empirical knowledge or limited mathematical models struggle to adapt to complex and dynamic machining environments.To address this,we implement real-time tool condition recognition by introducing deep learning technology.Aiming to the insufficient recognition accuracy,we propose a pyramid pooling-based vision Transformer network(P2ViT-Net)method for tool condition recognition.Using images as input effectively mitigates the issue of low-dimensional signal features.We enhance the vision Transformer(ViT)framework for image classification by developing the P2ViT model and adapt it to tool condition recognition.Experimental results demonstrate that our improved P2ViT model achieves 94.4%recognition accuracy,showing a 10%improvement over conventional ViT and outperforming all comparative convolutional neural network models. 展开更多
关键词 tool condition recognition TRANSFORMER pyramid pooling deep convolutional neural network
在线阅读 下载PDF
基于改进遗传算法的NGS Pooling分组优化
3
作者 张洪波 陈文丽 +1 位作者 张立明 曹航源 《计算机时代》 2025年第9期12-15,共4页
高通量测序作为一项在生物医药领域广泛应用的技术,具有快速、低成本地对遗传物质进行测序的优势。利用NGS的高通量特性,条形码(barcode)多重测序技术可将多个样本混合测序,从而大幅提高测序效率并降低成本。然而,面对海量样本的混合(Po... 高通量测序作为一项在生物医药领域广泛应用的技术,具有快速、低成本地对遗传物质进行测序的优势。利用NGS的高通量特性,条形码(barcode)多重测序技术可将多个样本混合测序,从而大幅提高测序效率并降低成本。然而,面对海量样本的混合(Pooling)实验分组,如何最大化芯片利用率、降低条形码冲突率、提高测序数据质量,已成为关键难点。本研究基于运筹学优化模型和智能优化算法,开发了一套能够快速实现自动化分组的软件系统。该系统能显著提高芯片利用率、缩短分组等待时间,并避免样本索引冲突等问题,实验结果验证了该算法与模型的有效性。 展开更多
关键词 高通量测序 pooling实验分组 自动化分组 运筹学优化模型 智能优化算法
在线阅读 下载PDF
VPM-Net:Person Re-ID Network Based on Visual Prompt Technology and Multi-Instance Negative Pooling
4
作者 Haitao Xie Yuliang Chen +3 位作者 Yunjie Zeng Lingyu Yan Zhizhi Wang Zhiwei Ye 《Computers, Materials & Continua》 2025年第5期3389-3410,共22页
With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhan... With the rapid development of intelligent video surveillance technology,pedestrian re-identification has become increasingly important inmulti-camera surveillance systems.This technology plays a critical role in enhancing public safety.However,traditional methods typically process images and text separately,applying upstream models directly to downstream tasks.This approach significantly increases the complexity ofmodel training and computational costs.Furthermore,the common class imbalance in existing training datasets limitsmodel performance improvement.To address these challenges,we propose an innovative framework named Person Re-ID Network Based on Visual Prompt Technology andMulti-Instance Negative Pooling(VPM-Net).First,we incorporate the Contrastive Language-Image Pre-training(CLIP)pre-trained model to accurately map visual and textual features into a unified embedding space,effectively mitigating inconsistencies in data distribution and the training process.To enhancemodel adaptability and generalization,we introduce an efficient and task-specific Visual Prompt Tuning(VPT)technique,which improves the model’s relevance to specific tasks.Additionally,we design two key modules:the Knowledge-Aware Network(KAN)and theMulti-Instance Negative Pooling(MINP)module.The KAN module significantly enhances the model’s understanding of complex scenarios through deep contextual semantic modeling.MINP module handles samples,effectively improving the model’s ability to distinguish fine-grained features.The experimental outcomes across diverse datasets underscore the remarkable performance of VPM-Net.These results vividly demonstrate the unique advantages and robust reliability of VPM-Net in fine-grained retrieval tasks. 展开更多
关键词 Person re-identification multi-instance negative pooling visual prompt tuning
在线阅读 下载PDF
辛空间的排列问题及具有容错能力的pooling设计的紧界 被引量:9
5
作者 赵向会 李莉 张更生 《数学物理学报(A辑)》 CSCD 北大核心 2012年第2期414-423,共10页
该文利用辛空间上的子空间构造了一类新的d^z析取矩阵,然后研究了如下排列问题:对于给定的整数m,r,s,v,d,q和辛空间F_q^(2v)中的一个(m,s)型子空间S,这里v+s≥m>r≥2s-1≥1,d≥2,q是一个素数的幂,作者从S中找到d个(m-1,s-1)型子空间H... 该文利用辛空间上的子空间构造了一类新的d^z析取矩阵,然后研究了如下排列问题:对于给定的整数m,r,s,v,d,q和辛空间F_q^(2v)中的一个(m,s)型子空间S,这里v+s≥m>r≥2s-1≥1,d≥2,q是一个素数的幂,作者从S中找到d个(m-1,s-1)型子空间H_1,…H_d,使包含在这些(m-1,s-1)型子空间中的(r,s-1)型子空间个数达到最大.然后利用这个排列的有关结论,给出了一类pooling设计的紧界. 展开更多
关键词 pooling设计 d^z析取 辛空间 排列问题 紧界
在线阅读 下载PDF
基于DNA pooling技术的全基因组关联研究筛选主动脉夹层等位基因遗传位点 被引量:1
6
作者 陈逸飞 钟诗龙 +3 位作者 罗建方 薛凌 黎明 胡孜阳 《实用医学杂志》 CAS 北大核心 2012年第20期3405-3407,共3页
目的:筛选与主动脉夹层发病机制相关的遗传易感基因。方法:从主动脉夹层患者(150例)及对照组(250例)外周血白细胞提取基因组DNA,采用DNA Pooling为基础的Illumina Human660W-Quad芯片扫描,筛选与主动脉夹层发病相关的遗传易感基因。结果... 目的:筛选与主动脉夹层发病机制相关的遗传易感基因。方法:从主动脉夹层患者(150例)及对照组(250例)外周血白细胞提取基因组DNA,采用DNA Pooling为基础的Illumina Human660W-Quad芯片扫描,筛选与主动脉夹层发病相关的遗传易感基因。结果:(1)对照组女性数量明显多于病例组(P<0.01);年龄、吸烟、高血压、糖尿病人数无统计学差异(P>0.05)。(2)遗传变异位点SNPrs2298491(位于TBCEL基因),SNP rs6080720(位于BFSP1基因),SNP rs7653410(位于SNTN基因),SNP rs2345106(位于COLQ基因)和位于ABCA13基因上的SNPrs4024044可能与主动脉夹层的发病有关。结论:SNPsrs2298491,rs6080720,rs7653410,rs2345106和rs4024044可能是主动脉夹层发病机制相关遗传变异位点的一部分。 展开更多
关键词 主动脉夹层 DNA pooling 单核苷酸多态性 全基因组关联研究 基因
暂未订购
利用伪辛子空间构造的一类pooling设计及其纠错能力的紧界分析 被引量:1
7
作者 赵向会 刘铭 张更生 《河北师范大学学报(自然科学版)》 CAS 2015年第5期369-373,共5页
利用伪辛空间上的子空间构造了一类新的dz-析取矩阵,证明了它的析取性,讨论了反映dz-析取矩阵纠错能力z值的紧界.
关键词 pooling设计 dz-析取 伪辛空间 紧界
在线阅读 下载PDF
奇特征正交空间上可检错Pooling设计的构作 被引量:1
8
作者 赵燕冰 刘志刚 《湖南理工学院学报(自然科学版)》 CAS 2009年第3期16-18,共3页
Pooling设计的数学模型是一个d-disjunct矩阵.利用奇特征正交空间中全迷向子空间构作了d-disjunct矩阵,并通过计算它的Hamming距离分析了它的检纠错能力,根据Kautz-Singleton定理对d的范围作了估算.
关键词 奇特征正交空间 全迷向子空间 pooling设计 D-DISJUNCT矩阵 HAMMING距离 检错 纠错
在线阅读 下载PDF
奇异线性空间上的Pooling设计及其紧界(英文)
9
作者 刘雪梅 接贤 高有 《黑龙江大学自然科学学报》 CAS 北大核心 2014年第5期583-588,共6页
基于有限域上的奇异线性空间的两种不同形式的子空间,构造一族具有纠错能力的Pooling设计,讨论其析取性质,给出Pooling设计的紧界。
关键词 pooling设计 d^e-析取矩阵 奇异线性空间 紧界
在线阅读 下载PDF
采用Pyrosequencing和Pooling技术对SNP位点多态性分析
10
作者 赵珍敏 张素华 《中国司法鉴定》 2014年第1期56-58,共3页
目的建立基于pyrosequencing和Pooling技术进行SNP位点的法医学多态性分析技术。方法对50名无关个体样本建立一适合pyrosequencing检测的组池;采用PyroMark Assay Design 2.0软件进行SNP位点等位基因定量分析的引物设计;对组池样本PCR... 目的建立基于pyrosequencing和Pooling技术进行SNP位点的法医学多态性分析技术。方法对50名无关个体样本建立一适合pyrosequencing检测的组池;采用PyroMark Assay Design 2.0软件进行SNP位点等位基因定量分析的引物设计;对组池样本PCR产物进行焦磷酸测序检测。结果检测的3个SNP位点多态性良好,其中位点rs220028与以往人群调查后频率数据无显著差异。结论采用pyrosequencing和Pooling技术对SNP位点进行多态性分析,适合于位点的初筛及大规模群体调查。该技术准确可靠,方便快捷。 展开更多
关键词 PYROSEQUENCING pooling SNP
在线阅读 下载PDF
特征不为2的正交空间上的一类Pooling设计的构作
11
作者 邱双月 《河北师范大学学报(自然科学版)》 CAS 北大核心 2010年第3期252-255,共4页
非适应性群验在DNA序列筛选等方面有许多实际应用.构作容错和纠错能力强的pooling设计是非适应性群验的中心问题之一.利用正交空间上的一类(m,2s,s)型子空间构作了一个dz-析取矩阵,并证明了当d≤q+1时,z值是最佳的.
关键词 pooling设计 d-析取矩阵 dz-析取矩阵
在线阅读 下载PDF
辛空间上可检错Pooling设计的讨论
12
作者 赵燕冰 邓超公 《廊坊师范学院学报(自然科学版)》 2009年第2期13-14,17,共3页
利用辛空间上全迷向子空间的性质构作了Pooling设计的一种重要的数学模型d-disjunct矩阵并计算了它的Hamming距离,分析了它的检纠错能力,对d的范围作了估算。
关键词 辛空间 全迷向子空间 pooling设计 D-DISJUNCT矩阵 HAMMING距离 检错 检纠错
在线阅读 下载PDF
可纠错pooling设计的一个构作 被引量:2
13
作者 岳雅璠 刘稳 《河北师范大学学报(自然科学版)》 CAS 北大核心 2009年第1期7-9,共3页
一个非时序性群试(NGT)算法在DNA筛选等领域都有重要应用,而NGT算法的一个数学模型是d-disjunct矩阵.通过Bd(δ**(n,d,k))的Hamming距离构作一个d-disjunct矩阵,其中δ**(n,d,k)是在δ(n,d,k)的基础上加上δc(n,,αk)构成的,1≤α≤m+1... 一个非时序性群试(NGT)算法在DNA筛选等领域都有重要应用,而NGT算法的一个数学模型是d-disjunct矩阵.通过Bd(δ**(n,d,k))的Hamming距离构作一个d-disjunct矩阵,其中δ**(n,d,k)是在δ(n,d,k)的基础上加上δc(n,,αk)构成的,1≤α≤m+1且α∈Z;证明了所构作的矩阵是可纠正1个错误、检测2个错误的d-disjunct矩阵. 展开更多
关键词 D-DISJUNCT矩阵 pooling设计 HAMMING距离
在线阅读 下载PDF
A multivariate grey incidence model for different scale data based on spatial pyramid pooling 被引量:7
14
作者 ZHANG Ke CUI Le YIN Yao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期770-779,共10页
In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of ... In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms. 展开更多
关键词 grey system spatial pyramid pooling grey incidence multivariate time series
在线阅读 下载PDF
Deep Rank-Based Average Pooling Network for Covid-19 Recognition 被引量:4
15
作者 Shui-Hua Wang Muhammad Attique Khan +3 位作者 Vishnuvarthanan Govindaraj Steven L.Fernandes Ziquan Zhu Yu-Dong Zhang 《Computers, Materials & Continua》 SCIE EI 2022年第2期2797-2813,共17页
(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognitio... (Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognition.(Methods)521 subjects yield 1164 slice images via the slice level selection method.All the 1164 slice images comprise four categories:COVID-19 positive;community-acquired pneumonia;second pulmonary tuberculosis;and healthy control.Our method firstly introduced an improved multiple-way data augmentation.Secondly,an n-conv rankbased average pooling module(NRAPM)was proposed in which rank-based pooling—particularly,rank-based average pooling(RAP)—was employed to avoid overfitting.Third,a novel DRAPNet was proposed based on NRAPM and inspired by the VGGnetwork.Grad-CAM was used to generate heatmaps and gave our AI model an explainable analysis.(Results)Our DRAPNet achieved a micro-averaged F1 score of 95.49%by 10 runs over the test set.The sensitivities of the four classes were 95.44%,96.07%,94.41%,and 96.07%,respectively.The precisions of four classes were 96.45%,95.22%,95.05%,and 95.28%,respectively.The F1 scores of the four classes were 95.94%,95.64%,94.73%,and 95.67%,respectively.Besides,the confusion matrix was given.(Conclusions)The DRAPNet is effective in diagnosing COVID-19 and other chest infectious diseases.The RAP gives better results than four other methods:strided convolution,l2-norm pooling,average pooling,and max pooling. 展开更多
关键词 COVID-19 rank-based average pooling deep learning deep neural network
在线阅读 下载PDF
A Pooling Method Developed for Use in Convolutional Neural Networks 被引量:3
16
作者 Ìsmail Akgül 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期751-770,共20页
In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convoluti... In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convolutional neural networks,making the neural network more efficient.Maximum pooling,average pooling,and minimum pooling methods are generally used in convolutional neural networks.However,these pooling methods are not suitable for all datasets used in neural network applications.In this study,a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks.This method,which we call MAM(Maximum Average Minimum)pooling,is more interactive than other traditional maximum pooling,average pooling,and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value.The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks.To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods,training was carried out on the LeNet-5 model using CIFAR-10,CIFAR-100,and MNIST datasets.According to the results obtained,the proposed MAM pooling method performed better than the maximum pooling,average pooling,and minimum pooling methods in all pool sizes on three different datasets. 展开更多
关键词 pooling convolutional neural networks deep learning
在线阅读 下载PDF
A Decision-Support System for the Car Pooling Problem 被引量:6
17
作者 Riccardo Manzini Arrigo Pareschi 《Journal of Transportation Technologies》 2012年第2期85-101,共17页
The continuous increase of human mobility combined with a relevant use of private vehicles contributes to increase the ill effects of vehicle externalities on the environment, e.g. high levels of air pollution, toxic ... The continuous increase of human mobility combined with a relevant use of private vehicles contributes to increase the ill effects of vehicle externalities on the environment, e.g. high levels of air pollution, toxic emissions, noise pollution, and on the quality of life, e.g. parking problem, traffic congestion, and increase in the number of crashes and accidents. Transport demand management plays a very critical role in achieving greenhouse gas emission reduction targets. This study demonstrates that car pooling (CP) is an effective strategy to reduce transport volumes, transportation costs and related hill externalities in agreement with EU programs of emissions reduction targets. This paper presents an original approach to solve the CP problem. It is based on hierarchical clustering models, which have been adopted by an original decision support system (DSS). The DSS helps mobility managers to generate the pools and to design feasible paths for shared vehicles. A significant case studies and obtained results by the application of the proposed models are illustrated. They demonstrate the effectiveness of the approach and the supporting decisions tool. 展开更多
关键词 CAR pooling Clustering Analysis (CA) PASSENGER TRANSPORTATION MODES Vehicle Efficiency Sustainability TRANSPORT TRANSPORT DEMAND Management
暂未订购
Term-Based Pooling in Convolutional Neural Networks for Text Classification 被引量:2
18
作者 Shuifei Zeng Yan Ma +1 位作者 Xiaoyan Zhang Xiaofeng Du 《China Communications》 SCIE CSCD 2020年第4期109-124,共16页
To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combine... To achieve good results in convolutional neural networks(CNN) for text classification task, term-based pooling operation in CNNs is proposed. Firstly, the convolution results of several convolution kernels are combined by this method, and then the results after combination are made pooling operation, three sorts of CNN models(we named TBCNN, MCT-CNN and MMCT-CNN respectively) are constructed and then corresponding algorithmic thought are detailed on this basis. Secondly, relevant experiments and analyses are respectively designed to show the effects of three key parameters(convolution kernel, combination kernel number and word embedding) on three kinds of CNN models and to further demonstrate the effect of the models proposed. The experimental results show that compared with the traditional method of text classification in CNNs, term-based pooling method is addressed that not only the availability of the way is proved, but also the performance shows good superiority. 展开更多
关键词 convolutional NEURAL Networks term-based pooling TEXT Classification
在线阅读 下载PDF
VISPNN:VGG-Inspired Stochastic Pooling Neural Network 被引量:2
19
作者 Shui-Hua Wang Muhammad Attique Khan Yu-Dong Zhang 《Computers, Materials & Continua》 SCIE EI 2022年第2期3081-3097,共17页
Aim Alcoholism is a disease that a patient becomes dependent or addicted to alcohol.This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately.Methods We propose the ... Aim Alcoholism is a disease that a patient becomes dependent or addicted to alcohol.This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately.Methods We propose the VGG-Inspired stochastic pooling neural network(VISPNN)model based on three components:(i)a VGG-inspired mainstay network,(ii)the stochastic pooling technique,which aims to outperform traditional max pooling and average pooling,and(iii)an improved 20-way data augmentation(Gaussian noise,salt-and-pepper noise,speckle noise,Poisson noise,horizontal shear,vertical shear,rotation,Gamma correction,random translation,and scaling on both raw image and its horizontally mirrored image).In addition,two networks(Net-I and Net-II)are proposed in ablation studies.Net-I is based on VISPNN by replacing stochastic pooling with ordinary max pooling.Net-II removes the 20-way data augmentation.Results The results by ten runs of 10-fold cross-validation show that our VISPNN model gains a sensitivity of 97.98±1.32,a specificity of 97.80±1.35,a precision of 97.78±1.35,an accuracy of 97.89±1.11,an F1 score of 97.87±1.12,an MCC of 95.79±2.22,an FMI of 97.88±1.12,and an AUC of 0.9849,respectively.Conclusion The performance of our VISPNN model is better than two internal networks(Net-I and Net-II)and ten state-of-the-art alcoholism recognition methods. 展开更多
关键词 Deep learning ALCOHOLISM multiple-way data augmentation VGG convolutional neural network stochastic pooling
在线阅读 下载PDF
Clinical features of multiple gastrointestinal stromal tumors:A pooling analysis combined with evidence and gap map 被引量:2
20
作者 Chen Li Ke-Lu Yang +6 位作者 Quan Wang Jin-Hui Tian Yang Li Zhi-Dong Gao Xiao-Dong Yang Ying-Jiang Ye Ke-Wei Jiang 《World Journal of Gastroenterology》 SCIE CAS 2020年第47期7550-7567,共18页
BACKGROUND Multiple gastrointestinal stromal tumors(MGISTs)are a very rare type of gastrointestinal stromal tumor(GIST)and are usually observed in syndrome.AIM The paper aimed to describe the clinical and oncological ... BACKGROUND Multiple gastrointestinal stromal tumors(MGISTs)are a very rare type of gastrointestinal stromal tumor(GIST)and are usually observed in syndrome.AIM The paper aimed to describe the clinical and oncological features of MGISTs and to offer evidence for the diagnosis and treatment.METHODS Data of consecutive patients with MGISTs who were diagnosed at Peking University People’s Hospital(PKUPH)from 2008 to 2019 were retrospectively evaluated.Further,a literature search was conducted by retrieving data from PubMed,EMBASE,and the Cochrane library databases from inception up to November 30,2019.RESULTS In all,12 patients were diagnosed with MGISTs at PKUPH,and 43 published records were ultimately included following the literature review.Combined analysis of the whole individual patient data showed that female(59.30%),young(14.45%),and syndromic GIST(63.95%)patients comprised a large proportion of the total patient population.Tumors were mainly located in the small intestine(58.92%),and both CD117 and CD34 were generally positive.After a mean 78.32-mo follow-up,the estimated median overall survival duration(11.5 years)was similar to single GISTs,but recurrence-free survival was relatively poorer.CONCLUSION The clinical and oncological features are potentially different between MGISTs and single GIST.Further studies are needed to explore appropriate surgical approach and adjuvant therapy. 展开更多
关键词 Gastrointestinal stromal tumor MULTIPLE pooling analysis Cross sectional study Evidence and gap map
暂未订购
上一页 1 2 49 下一页 到第
使用帮助 返回顶部