期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于ConvMixer骨干的显著性目标检测模型
1
作者
张斯博
朱敬华
+1 位作者
奚赫然
杜欣月
《黑龙江大学工程学报(中英俄文)》
2024年第1期48-57,共10页
显著性目标检测(Saliency Object Detection,SOD)算法多采用基于卷积神经网络(Convolutional Neural Network,CNN)的骨干网络提取特征,然而CNN无法获取图像的长范围特征依赖。视觉转换器(Vision Transformer,ViT)将图像划分为图块(patc...
显著性目标检测(Saliency Object Detection,SOD)算法多采用基于卷积神经网络(Convolutional Neural Network,CNN)的骨干网络提取特征,然而CNN无法获取图像的长范围特征依赖。视觉转换器(Vision Transformer,ViT)将图像划分为图块(patch),通过Transformer在patch之间传播全局上下文信息获得长范围特征依赖,但Transformer的自注意力层具有二次方的时间复杂性。因此,提出一种低复杂性的基于patch的SOD算法CM-PoolNet,对经典的显著性目标检测PoolNet模型的骨干网络进行改进,使用卷积模型ConvMixer替换VGG和RestNet,提出新的特征融合方法。基于U型结构,编码器对输入图像进行Patch Embedding,送入重复堆叠的由深度可分离卷积和膨胀卷积构成的ConvMixer特征提取器中。为解码器设计了基于patch的特征融合模块。设计了BCE、SSIM和IOU 3种损失,引导模型在像素级、图块级、特征图级3级层次中学习输入图像和真值图像之间的转换。在DUTS数据集和ECSSD数据集上进行实验,结果表明:提出的模型能够有效地分割突出的目标区域,并且准确预测具有清晰边界的精细结构。
展开更多
关键词
显著性目标检测
补丁嵌入
混合损失函数
poolnet
ConvMixer
在线阅读
下载PDF
职称材料
题名
一种基于ConvMixer骨干的显著性目标检测模型
1
作者
张斯博
朱敬华
奚赫然
杜欣月
机构
黑龙江大学计算机科学技术学院
出处
《黑龙江大学工程学报(中英俄文)》
2024年第1期48-57,共10页
基金
国家自然科学基金项目(82374626)。
文摘
显著性目标检测(Saliency Object Detection,SOD)算法多采用基于卷积神经网络(Convolutional Neural Network,CNN)的骨干网络提取特征,然而CNN无法获取图像的长范围特征依赖。视觉转换器(Vision Transformer,ViT)将图像划分为图块(patch),通过Transformer在patch之间传播全局上下文信息获得长范围特征依赖,但Transformer的自注意力层具有二次方的时间复杂性。因此,提出一种低复杂性的基于patch的SOD算法CM-PoolNet,对经典的显著性目标检测PoolNet模型的骨干网络进行改进,使用卷积模型ConvMixer替换VGG和RestNet,提出新的特征融合方法。基于U型结构,编码器对输入图像进行Patch Embedding,送入重复堆叠的由深度可分离卷积和膨胀卷积构成的ConvMixer特征提取器中。为解码器设计了基于patch的特征融合模块。设计了BCE、SSIM和IOU 3种损失,引导模型在像素级、图块级、特征图级3级层次中学习输入图像和真值图像之间的转换。在DUTS数据集和ECSSD数据集上进行实验,结果表明:提出的模型能够有效地分割突出的目标区域,并且准确预测具有清晰边界的精细结构。
关键词
显著性目标检测
补丁嵌入
混合损失函数
poolnet
ConvMixer
Keywords
saliency object detection
patch embedding
mixed loss function
poolnet
ConvMixer
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于ConvMixer骨干的显著性目标检测模型
张斯博
朱敬华
奚赫然
杜欣月
《黑龙江大学工程学报(中英俄文)》
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部