With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, i...With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM) and Transformer considering the time-series transaction information of smart contracts as well as the global information. Based on the verified smart contract addresses, account features, and code features are extracted to construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification problem. By comparing our method with the other four typical detection methods in the experiment, the LT-SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart contract detection.展开更多
The emergence of smart contracts has increased the attention of industry and academia to blockchain technology,which is tamper-proofing,decentralized,autonomous,and enables decentralized applications to operate in unt...The emergence of smart contracts has increased the attention of industry and academia to blockchain technology,which is tamper-proofing,decentralized,autonomous,and enables decentralized applications to operate in untrustworthy environments.However,these features of this technology are also easily exploited by unscrupulous individuals,a typical example of which is the Ponzi scheme in Ethereum.The negative effect of unscrupulous individuals writing Ponzi scheme-type smart contracts in Ethereum and then using these contracts to scam large amounts of money has been significant.To solve this problem,we propose a detection model for detecting Ponzi schemes in smart contracts using bytecode.In this model,our innovation is shown in two aspects:We first propose to use two bytes as one characteristic,which can quickly transform the bytecode into a high-dimensional matrix,and this matrix contains all the implied characteristics in the bytecode.Then,We innovatively transformed the Ponzi schemes detection into an anomaly detection problem.Finally,an anomaly detection algorithm is used to identify Ponzi schemes in smart contracts.Experimental results show that the proposed detection model can greatly improve the accuracy of the detection of the Ponzi scheme contracts.Moreover,the F1-score of this model can reach 0.88,which is far better than those of other traditional detection models.展开更多
Due to the anonymity of blockchain,frequent security incidents and attacks occur through it,among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses.Machine learningbase...Due to the anonymity of blockchain,frequent security incidents and attacks occur through it,among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses.Machine learningbased methods are believed to be promising for detecting ethereum Ponzi schemes.However,there are still some flaws in current research,e.g.,insufficient feature extraction of Ponzi scheme smart contracts,without considering class imbalance.In addition,there is room for improvement in detection precision.Aiming at the above problems,this paper proposes an ethereum Ponzi scheme detection scheme through opcode context analysis and adaptive boosting(AdaBoost)algorithm.Firstly,this paper uses the n-gram algorithm to extract more comprehensive contract opcode features and combine them with contract account features,which helps to improve the feature extraction effect.Meanwhile,adaptive synthetic sampling(ADASYN)is introduced to deal with class imbalanced data,and integrated with the Adaboost classifier.Finally,this paper uses the improved AdaBoost classifier for the identification of Ponzi scheme contracts.Experimentally,this paper tests our model in real-world smart contracts and compares it with representative methods in the aspect of F1-score and precision.Moreover,this article compares and discusses the state of art methods with our method in four aspects:data acquisition,data preprocessing,feature extraction,and classifier design.Both experiment and discussion validate the effectiveness of our model.展开更多
As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security ...As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems.Although numerous detection techniques have been proposed,existing methods suffer from significant limitations,such as class imbalance and insufficient modeling of transaction-related semantic features.To address these challenges,this paper proposes an oversampling-based detection framework for Ponzi smart contracts.We enhance the Adaptive Synthetic Sampling(ADASYN)algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions.This enhancement facilitates the generation of high-quality minority class samples and effectively mitigates class imbalance.In addition,we design a Contract Transaction Graph(CTG)construction algorithm to preserve key transactional semantics through feature extraction from contract code.A graph neural network(GNN)is then applied for classification.This study employs a publicly available dataset from the XBlock platform,consisting of 318 verified Ponzi contracts and 6498 benign contracts.Sourced from real Ethereum deployments,the dataset reflects diverse application scenarios and captures the varied characteristics of Ponzi schemes.Experimental results demonstrate that our approach achieves an accuracy of 96%,a recall of 92%,and an F1-score of 94%in detecting Ponzi contracts,outperforming state-of-the-art methods.展开更多
基金This work was granted by Qin Xin Talents Cultivation Program(No.QXTCP C202115)Beijing Information Science and Technology University+1 种基金the Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing Fund(No.GJJ-23)National Social Science Foundation,China(No.21BTQ079).
文摘With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM) and Transformer considering the time-series transaction information of smart contracts as well as the global information. Based on the verified smart contract addresses, account features, and code features are extracted to construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification problem. By comparing our method with the other four typical detection methods in the experiment, the LT-SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart contract detection.
基金This work was supported by the Scientific and Technological Project of Henan Province(Grant No.202102310340)Foundation of University Young Key Teacher of Henan Province(Grant Nos.2019GGJS040,2020GGJS027)+1 种基金Key Scientific Research Projects of Colleges and Universities in Henan Province(Grant No.21A110005)National Natual Science Foundation of China(61701170).
文摘The emergence of smart contracts has increased the attention of industry and academia to blockchain technology,which is tamper-proofing,decentralized,autonomous,and enables decentralized applications to operate in untrustworthy environments.However,these features of this technology are also easily exploited by unscrupulous individuals,a typical example of which is the Ponzi scheme in Ethereum.The negative effect of unscrupulous individuals writing Ponzi scheme-type smart contracts in Ethereum and then using these contracts to scam large amounts of money has been significant.To solve this problem,we propose a detection model for detecting Ponzi schemes in smart contracts using bytecode.In this model,our innovation is shown in two aspects:We first propose to use two bytes as one characteristic,which can quickly transform the bytecode into a high-dimensional matrix,and this matrix contains all the implied characteristics in the bytecode.Then,We innovatively transformed the Ponzi schemes detection into an anomaly detection problem.Finally,an anomaly detection algorithm is used to identify Ponzi schemes in smart contracts.Experimental results show that the proposed detection model can greatly improve the accuracy of the detection of the Ponzi scheme contracts.Moreover,the F1-score of this model can reach 0.88,which is far better than those of other traditional detection models.
基金This work was supported by National Key R&D Program of China(Grant Numbers 2020YFB1005900,2022YFB3305802).
文摘Due to the anonymity of blockchain,frequent security incidents and attacks occur through it,among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses.Machine learningbased methods are believed to be promising for detecting ethereum Ponzi schemes.However,there are still some flaws in current research,e.g.,insufficient feature extraction of Ponzi scheme smart contracts,without considering class imbalance.In addition,there is room for improvement in detection precision.Aiming at the above problems,this paper proposes an ethereum Ponzi scheme detection scheme through opcode context analysis and adaptive boosting(AdaBoost)algorithm.Firstly,this paper uses the n-gram algorithm to extract more comprehensive contract opcode features and combine them with contract account features,which helps to improve the feature extraction effect.Meanwhile,adaptive synthetic sampling(ADASYN)is introduced to deal with class imbalanced data,and integrated with the Adaboost classifier.Finally,this paper uses the improved AdaBoost classifier for the identification of Ponzi scheme contracts.Experimentally,this paper tests our model in real-world smart contracts and compares it with representative methods in the aspect of F1-score and precision.Moreover,this article compares and discusses the state of art methods with our method in four aspects:data acquisition,data preprocessing,feature extraction,and classifier design.Both experiment and discussion validate the effectiveness of our model.
基金supported by the Key Project of Joint Fund of the National Natural Science Foundation of China“Research on Key Technologies and Demonstration Applications for Trusted and Secure Data Circulation and Trading”(U24A20241)the National Natural Science Foundation of China“Research on Trusted Theories and Key Technologies of Data Security Trading Based on Blockchain”(62202118)+4 种基金the Major Scientific and Technological Special Project of Guizhou Province([2024]014)Scientific and Technological Research Projects from the Guizhou Education Department(Qian jiao ji[2023]003)the Hundred-Level Innovative Talent Project of the Guizhou Provincial Science and Technology Department(Qiankehe Platform Talent-GCC[2023]018)the Major Project of Guizhou Province“Research and Application of Key Technologies for Trusted Large Models Oriented to Public Big Data”(Qiankehe Major Project[2024]003)the Guizhou Province Computational Power Network Security Protection Science and Technology Innovation Talent Team(Qiankehe Talent CXTD[2025]029).
文摘As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems.Although numerous detection techniques have been proposed,existing methods suffer from significant limitations,such as class imbalance and insufficient modeling of transaction-related semantic features.To address these challenges,this paper proposes an oversampling-based detection framework for Ponzi smart contracts.We enhance the Adaptive Synthetic Sampling(ADASYN)algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions.This enhancement facilitates the generation of high-quality minority class samples and effectively mitigates class imbalance.In addition,we design a Contract Transaction Graph(CTG)construction algorithm to preserve key transactional semantics through feature extraction from contract code.A graph neural network(GNN)is then applied for classification.This study employs a publicly available dataset from the XBlock platform,consisting of 318 verified Ponzi contracts and 6498 benign contracts.Sourced from real Ethereum deployments,the dataset reflects diverse application scenarios and captures the varied characteristics of Ponzi schemes.Experimental results demonstrate that our approach achieves an accuracy of 96%,a recall of 92%,and an F1-score of 94%in detecting Ponzi contracts,outperforming state-of-the-art methods.