The original landform along the China Russia Crude Oil Pipeline(CRCOP,line 2)was disturbed during installation of pavement for the pipeline.Forest and vegetation coverage is dense,and runoff develops along the pipe.Si...The original landform along the China Russia Crude Oil Pipeline(CRCOP,line 2)was disturbed during installation of pavement for the pipeline.Forest and vegetation coverage is dense,and runoff develops along the pipe.Since the opera tion of the CRCOP(line 2)began in 2018,ponding has appeared on both sides of the pipeline.If there is no drainage,ponding can hardly dissipate,due to the low permeability of the permafrost layer.With the supply of surface flow and the transportation of oil at positive temperatures,ponding promotes an increase in temperature and changes the boundary ther mal conditions of the pipeline.Meanwhile,when the ponding freezes and thaws,frost heave threatens operational safety of the pipeline.Furthermore,the ponding can affect the thermal condition of line 1.In this paper,the distribution of pond ing along the CRCOP was obtained by field investigation.The type and cause of ponding were summarized,and the catch ment and stream order were extracted by the Digital Elevation Model(DEM).According to the statistical results in attri butes for topographic factors,it is known that ponding along the pipeline is relative to elevation,slope,aspect,and the Topographic Wetness Index(TWI).Water easily accumulates at altitudes of 300450 m,slopes within 3°5°,aspect in the northeast or south,TWI within 1316,flow direction in north east south,and flow length within 90150 km.This paper proposes a theoretical basis for the cause and characteristics of ponding along the pipeline.展开更多
Buried pipelines are widely used for transporting oil in remote cold regions. However, the warm oil can induce considerable thermal influence on the surrounding frozen soils and result in severe maintenance problems. ...Buried pipelines are widely used for transporting oil in remote cold regions. However, the warm oil can induce considerable thermal influence on the surrounding frozen soils and result in severe maintenance problems. This paper presents a case study of the thermal influence of ponding and buried warm-oil pipelines on permafrost along the China-Russia Crude Oil Pipeline(CRCOP) in Northeast China. Since its operation in 2011, the operation of the warm-oil pipelines has led to rapid warming and thawing of the surrounding permafrost and development of sizable ponding along the pipeline route,which, in return, exacerbates the permafrost degradation. A field study was conducted along a 400-km long segment of the CRCOP in permafrost regions of Northeast China to collect the location and size information of ponding. A two-dimensional heat transfer model coupled with phase change was established to analyze the thermal influence of ponding and the operation of warm-oil pipelines on the surrounding permafrost. In-situ measured ground temperatures from a monitoring site were obtained to validate the numerical model. The simulation results show that ponding accelerates the development of the thaw bulb around the pipeline. The maximum thaw depth below the pipeline increases from 4 m for the case without ponding to 9 m for the case with ponding after 50 years of operation, and ponding directly above the pipe induces the maximum thaw depth. Engineering measures should be adopted to control the size or even eliminate surface water-rich ponding for the long-term performance of buried warm-oil pipelines.展开更多
The study area is located in the Lower Yom River Basin covering an area of about 970 km^2 in the lower part of Northern Thailand, which is underlain by sequences of unconsolidated alluvial deposits derived from the Yo...The study area is located in the Lower Yom River Basin covering an area of about 970 km^2 in the lower part of Northern Thailand, which is underlain by sequences of unconsolidated alluvial deposits derived from the Yom and Nan River floodplains. Groundwater has been heavily exploited largely for agriculture from the shallow gravel, sand and silt aquifer in the basin. Drastically declining water levels, up to 10 m in some areas, has been observed within the past decade, creating difficulties with lift irrigation for the local farmers. Therefore, the Department of Groundwater Resources, Thailand, considers that groundwater artificial recharge may be useful for recovering the static water levels within the most hydrogeological suitable areas. The objective of the paper is to rank the suitability of sub-watershed in the Lower Yom River Basin for conducting a pilot-scale testing of MAR (managed aquifer recharge) by ponding system. Hydrogeological and non-hydrogeological parameters were used to formulate the site selection criteria. Boolean logic and Fuzzy logic were used for delineating the 19 sub-watersheds in the Lan Ba watershed. Detailed hydrogeological investigations were conducted in the 10 most prospective sub-watersheds. Of these, the Nong Na 3 sub-watershed covering an area of about 500 hectares was determined to be the most appropriate site for the MAR pilot construction and testing.展开更多
Information on the Arctic sea ice climate indicators is crucial to business strategic planning and climate monitoring.Data on the evolvement of the Arctic sea ice and decadal trends of phenology factors during melt se...Information on the Arctic sea ice climate indicators is crucial to business strategic planning and climate monitoring.Data on the evolvement of the Arctic sea ice and decadal trends of phenology factors during melt season are necessary for climate prediction under global warming.Previous studies on Arctic sea ice phenology did not involve melt ponds that dramatically lower the ice surface albedo and tremendously affect the process of sea ice surface melt.Temporal means and trends of the Arctic sea ice phenology from 1982 to 2017 were examined based on satellite-derived sea ice concentration and albedo measurements.Moreover,the timing of ice ponding and two periods corresponding to it were newly proposed as key stages in the melt season.Therefore,four timings,i.e.,date of snow and ice surface melt onset(MO),date of pond onset(PO),date of sea ice opening(DOO),and date of sea ice retreat(DOR);and three durations,i.e.,melt pond formation period(MPFP,i.e.,MO–PO),melt pond extension period(MPEP,i.e.,PO–DOR),and seasonal loss of ice period(SLIP,i.e.,DOO–DOR),were used.PO ranged from late April in the peripheral seas to late June in the central Arctic Ocean in Bootstrap results,whereas the pan-Arctic was observed nearly 4 days later in NASA Team results.Significant negative trends were presented in the MPEP in the Hudson Bay,the Baffin Bay,the Greenland Sea,the Kara and Barents seas in both results,indicating that the Arctic sea ice undergoes a quick transition from ice to open water,thereby extending the melt season year to year.The high correlation coefficient between MO and PO,MPFP illustrated that MO predominates the process of pond formation.展开更多
This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte...This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.展开更多
Activity 1 Think about the following questions and write down your answers before reading the text.1.Suppose you are planning a trip to Antarctica and want to visit Don Juan Pond,what special preparations would you ne...Activity 1 Think about the following questions and write down your answers before reading the text.1.Suppose you are planning a trip to Antarctica and want to visit Don Juan Pond,what special preparations would you need to make compared to a normal trip?2.In your opinion,how could the unique features of Don Juan Pond be used to develop educational programs for high school students?展开更多
Insects represent an important taxon for the functioning of ecosystems. They also contribute to human and animal nutrition and are vector agents of several diseases. In Congo-Brazzaville the diversity of entomofauna i...Insects represent an important taxon for the functioning of ecosystems. They also contribute to human and animal nutrition and are vector agents of several diseases. In Congo-Brazzaville the diversity of entomofauna is very little known. The present study aimed to investigate ponds. The inventory of insects was conducted in ponds Ngatsouéné and Yo, the first one was located in the center of Djambala and the last one was 2 km from the center of the city. The insects were caught with an entomological net from 23rd to 24th December 2012. The study identifies 37 species belonging to 17 families and 7 orders. This entomofauna study showed a high proportion of the Orthoptera order (27.20%). Family Mantidae has the largest species number (13.51%). Mantis sp is the most abundant species (13.51%). This is a database and therefore, should be extended to different aquatic ecosystems of the Department of Plateaux. The results obtained during this study will contribute to the development of a database for the management of entomofauna in Congo.展开更多
This study evaluates the dynamics of trace metals impacts on the ecosystems of the Bartlett Pond, a small shallow wetland pond located in Laredo, Texas by analyzing sediment samples taken from four quadrants of the po...This study evaluates the dynamics of trace metals impacts on the ecosystems of the Bartlett Pond, a small shallow wetland pond located in Laredo, Texas by analyzing sediment samples taken from four quadrants of the pond. The concentrations of trace elements in sediment samples are highest for iron (Fe), followed by chromium (Cr), then lead (Pb), with lower concentration of antimony (Sb), cobalt (Co), arsenic (As), cadmium (Cd), and the lowest concentration being thallium (Tl) within Bartlett Pond. The sediment quality of the pond is acceptable for organisms and the environment as trace element concentrations (e.g. As, Cd, Cr, and Pb) are within the probable effect concentration (PEC) of National Ocean and Atmospheric Administration (NOAA) guidelines although the PEC values for Co, Fe, Sb and Tl are not given. Bivariate and multivariate correlation analysis shows that most trace elements exhibit a strong positive correlation among them indicating the same anthropogenic sources and biogeochemical processes control these trace elements concentrations within the pond. We provided a comprehensive snapshot of trace element concentrations in sediments through descriptive analysis, laying the foundation for future environmental risk assessments. Correlation analysis of eight trace elements helped identify relationships, offering insights into pollution sources and potential health impacts. Additionally, univariate and multivariate predictive analyses generated numerous models, extending beyond the interpretation of partial and full regression coefficients. We also included graphical analyses of trace element variations, which are critical for understanding environmental processes and geochemical patterns. These findings advance our understanding about trace metals dynamics in sediments and may be a valuable reference for ecosystems and environmental management of different landscapes.展开更多
Food abundance and availability constitute fundamental determinants of foraging habitat quality for waterbirds, with high-quality foraging habitats playing a crucial role in supporting the survival and annual life cyc...Food abundance and availability constitute fundamental determinants of foraging habitat quality for waterbirds, with high-quality foraging habitats playing a crucial role in supporting the survival and annual life cycle of wintering populations. The ongoing degradation and loss of optimal habitats have forced wintering waterbirds to increasingly rely on alternative foraging sites and modify their behavioral adaptation strategies to cope with food scarcity. The Siberian Crane (Leucogeranus leucogeranus), a large-bodied endangered waterbird species characterized by specialized dietary preferences, demonstrates particular sensitivity to environmental alterations. Faced with diminishing suitable habitats and declining natural food resources, this species has progressively adapted to utilizing artificial habitats, including agricultural landscapes such as paddy fields and lotus ponds, as supplementary wintering foraging grounds to fulfill their energetic requirements. This study examines the hypothesis that Siberian Cranes adapt their foraging behavior through plastic behavioral strategies in artificial habitats under conditions of limited food availability, thereby enhancing population fitness. A comparative analysis of crane foraging behaviors was conducted between mudflats and lotus ponds throughout the 2023–2024 wintering period. This investigation focused on three critical environmental factors: food abundance, food burial depth, and sediment penetrability, examining their influence on foraging patterns across these distinct habitats. The results revealed significant inter-habitat differences: foraging success rates were substantially higher (p < 0.05) and food handling times markedly longer in lotus ponds compared to mudflats, whereas foraging effort and attempt frequency were significantly elevated in mudflat habitats. The superior food availability in lotus ponds facilitated enhanced foraging success rates, enabling cranes to accumulate essential energy reserves for winter survival. However, the deeper burial depth of lotus roots in these habitats required more intensive processing behaviors, including prolonged digging, breaking, and swallowing activities, which consequently increased handling time by approximately 40% and reduced foraging attempts by 25–30% compared to mudflat conditions. These behavioral trade-offs suggest that while lotus ponds provide adequate food resources, their structural characteristics may impose physiological constraints that limit their effectiveness as optimal foraging grounds for Siberian Cranes. These findings offer valuable insights into the behavioral plasticity of wintering Siberian Cranes response to spatial variations in food resource distribution, while contributing to our understanding of the ecological value of lotus roots as alternative winter food sources in artificial wetland ecosystems.展开更多
Wetlands are unique ecological environments capable of harboring high biodiversity.However,urbanization can degrade,eliminate,or transformthese habitats.Although amphibians utilize habitats created by humans in urban ...Wetlands are unique ecological environments capable of harboring high biodiversity.However,urbanization can degrade,eliminate,or transformthese habitats.Although amphibians utilize habitats created by humans in urban landscapes,few studies have investigated the infuence of thehabitat quality on the life history of anurans.We assessed life history traits such as snout-vent length(SVL),body condition,and reproductiveinvestment in the South American common toad Rhinella arenarum,to determine whether urbanization is harmful or benefcial to this species.We sampled wetlands with different levels of urbanization in Río Cuarto city,Córdoba,Argentina.We recorded males with lower SVL in mediumurbanized wetlands and those with the highest SVL in both low and high urbanization categories,similar to what was found for body conditionswith males with low body conditions inhabiting wetlands with a medium degree of urbanization.In females,lower SVL was recorded in mediumurbanization and highest SVL in high and low urbanization.It is observed that females recorded in highly urbanized wetlands have a very lowbody condition.The reproductive investment parameters were not signifcantly different,but we observed an association between a greaternumber of eggs and clutch size with wetlands of low urbanization.These results show a variability of responses of R.arenarum to urbanization,which could be due to phenotypic plasticity in its life history parameters,allowing it to inhabit urban areas.Continuous monitoring of the speciesin these wetlands is needed to determine if these biological responses are temporary or persistent.展开更多
Melt ponds are significant physical features on the ice surface throughout the Arctic summer,and the scarcity of observational data has resulted in a vague understanding about it.This study employs satellite data and ...Melt ponds are significant physical features on the ice surface throughout the Arctic summer,and the scarcity of observational data has resulted in a vague understanding about it.This study employs satellite data and multi-model averaged outputs from Coupled Model Intercomparison Project Phase 6(CMIP6)to analyze the spatiotemporal evolution characteristics of Arctic melt ponds and their relationship with sea ice thickness(SIT)and atmospheric energy flux.The ponds first emerge at lower latitudes and gradually extend to cover central ice areas as the season progresses,then persisting longer and covering larger total areas in the central region,with peak areas exceeding 0.6×10^(6)km^(2),which is four to five times that of other marginal areas.Over the past two decades,pond coverage has exhibited markedly different trends with slight decreases in the marginal seas but significant increases in the central area.Both CMIP6 and satellite data indicate that the sea ice carrying capacity,related to thickness,plays a crucial role in creating these differences.There is a marked increasing pond in areas with thicker ice.When the SIT falls below a certain threshold,however,sea ice melting results in decreased pond coverage.Additionally,the energy balance on the ice surface also dramatically impacts pond changes.For instance,the overall pond changes in central area are influenced by net longwave radiation and latent heat,with anomalies in these fluxes correlating highly(up to 0.8)with pond anomalies.Meanwhile,net shortwave radiation primarily causes local pond anomalies through the pond-shortwave feedback only under the clear weather conditions.展开更多
Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e...Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h.展开更多
The main consequences of climate change in the Sahel have been the metamorphosis of surface conditions. These metamorphoses have resulted in surface degradation, of which silting up of watersheds is the main phenomeno...The main consequences of climate change in the Sahel have been the metamorphosis of surface conditions. These metamorphoses have resulted in surface degradation, of which silting up of watersheds is the main phenomenon. The objective of this study is to assess the environmental trends of the Kourfa pond watershed. The study is based on diachronic mapping with Landsat satellite images and Google Earth images, over the period 1986 to 2021. The study reveals that vegetation (whose rate of regression doubled between 1986 and 2021) has decreased to the benefit of crop areas (whose rate of increase multiplied by 3.61 between 1986 and 2021). Bare soil and encrusted areas have also decreased, with regression rates almost double than those of 1986. In addition, the Kourfa waterholes have experienced two types of changes over 35 years: one progressive between 2011 and 2016 and the other regressive between 2001 and 2021 compared to 1986. The ravine network has been multiplied by a factor of 2.4, with density more than doubled and the connectivity of the hydrographic networks has risen from 2 to 4, with significant bank recession. This dynamic of the Kourfa pond is linked to the high drainage, the increasing complexity of the gully network and the erosion due to the retreat of the watershed banks, all of which contribute to the silting-up of the Kourfa watershed.展开更多
The purpose of this study was to evaluate the effects of retention ponds on the environment and population health by analyzing water samples from various ponds in Mogadishu, to determine the prevalence of waterborne i...The purpose of this study was to evaluate the effects of retention ponds on the environment and population health by analyzing water samples from various ponds in Mogadishu, to determine the prevalence of waterborne illnesses that occur during the rainy season in Mogadishu, and to find out what experts thought about the effects of retention ponds on the environment as well as population health in Mogadishu. Methods: Mixed designs were used in the study. The first design is an exploratory study where samples are taken from different retention ponds in Mogadishu. The second design involves gathering secondary data from the online FSNAU Dashboard regarding the incidence of rainfall and waterborne illnesses including malaria and cholera. Additionally, a cross-sectional survey of expert opinions using questionnaires was the third design. The 10 water samples were taken from retention ponds in Mogadishu as part of the sample size. Data on the fourth month was also gathered using the FNSAU dashboard, and seventy sample sizes were used for the expert self-administered questionnaire for the third design. Excel was used for data analysis in the initial design. While BMI SPSS versions 22 were used to analyze the data from the Self-administered Questionnaire, additional methods were utilized to compute descriptive statistics, such as mean and standard deviation, and to analyze demographic data in a frequency table. Findings: The results show that three samples had unsatisfactory scores (Grade D): Yaqshid (Warshadda Bastada) had a WQI of 80.85, Boondheer (Bondher Pond) had a WQI of 80.64, and Wartanabad (Xamar Jadiid Pond) had a WQI of 80.89. The remaining samples were all rated as fair (grade), which indicates that they ranged from 50 to 75. The months with the largest rainfall already occurred in December, November, and October, when the prevalence of diseases during the rainy season was highest for cholera cases. Although October and December saw a significant number of malaria cases, November did not. Retention ponds’ overall effects on residential environments were evaluated, and the results showed that the standard deviation was 0.802 and the cumulative average mean scores were 4.41 overall. This indicates that the respondents were in agreement that retention ponds in Mogadishu, Somalia, had an effect on residential areas. Recommendation: The study suggested that in order to identify retention pond contamination and create treatment units for its management, the Ministry of Health forms a district-level public health committee. All districts must have a sewer system installed by the local government, and retention ponds must be made easier in order to move waste outside of the city.展开更多
Antarctic continental lakes and ponds are among the most impoverished aquatic environments on earth but many of them support flourishing populations of cyanobacteria,eukaryotic algae,protozoans,and some multicellular ...Antarctic continental lakes and ponds are among the most impoverished aquatic environments on earth but many of them support flourishing populations of cyanobacteria,eukaryotic algae,protozoans,and some multicellular animals.In this study,we present results of a microscopic analysis of cyanobacteria and eukaryotic algae from nine diverse types of Antarctic continental water bodies during one austral summer.The results supplement and enlarge our previous studies on the limnological characteristics of the epiglacial and supraglacial lakes and ponds in Dronning Maud Land,an area that has received little attention from limnologists.The taxon with highest frequency among the samples(n=79)was Mesotaenium cf.berggrenii,a eukaryotic Zygnematophyceae,which occurred in 82%of the samples with a maximum cell density of 68 cells·mL^(-1).The taxa with second and third highest frequency were the prokaryotes Gloeocapsopsis(60%)and Leptolyngbya(41%),followed by Chlamydomonas(34%)and Cyanothece(29%).The number of taxa varied between 7-21 among the lakes and ponds,being highest in a supraglacial lake,and lowest in an epiglacial lake.The results did not reveal any obvious correlation between the abundance of any taxa and the water chemistry,but water bodies with inorganic sediments had higher cell densities and biomasses than those without sediment.This suggests the importance of sediment in supporting biological diversity in these ultraoligotrophic lakes and ponds.展开更多
The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in sta...The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in staging and wintering areas,methods to identify and target high-quality breeding habitats that result in the greatest potential for wildlife are still required.This is particularly true for species that breed in remote,inaccessible areas such as the American black duck,an intensively managed game bird in Eastern North America.Although evidence suggests that black ducks prefer productive,nutrient-rich waterbodies,such as beaver ponds,information about the distribution and quality of these habitats across the vast boreal forest is lacking with accurate identification remaining a challenge.Continuing advancements in remote sensing technologies that provide spatially extensive and temporally repeated information are particularly useful in meeting this information gap.In this study,we used multi-source remotely sensed information and a fuzzy analytical hierarchy process to map the spatial distribution of beaver ponds in Ontario.The use of multi-source data,including a Digital Elevation Model,a Sentinel-2 Multi-Spectral Image,and RadarSat 2 Polarimetric data,enabled us to identify individual beaver ponds on the landscape.Our model correctly identified an average of 83.0%of the known beaver dams and 72.5%of the known beaver ponds based on validation with an independent dataset.This study demonstrates that remote sensing is an effective approach for identifying beaver-modified wetland features and can be applied to map these and other wetland habitat features of interest across large spatial extents.Furthermore,the systematic acquisition strategy of the remote sensors employed is well suited for monitoring changes in wetland conditions that affect the availability of habitats important to waterfowl and other wildlife.展开更多
The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond...The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond. Two types of fish (bass and tilapia) were also sampled to see the trace element accumulation in different parts of their body. The concentrations of trace elements in water samples were found in the following order: Fe ≫Sb > Pb > As ≫Co > Tl > Cr > Cd within Bartlett Pond. Overall, the water quality of the pond is unacceptable for drinking and any other purposes as trace element concentrations (e.g. As, Cd, Co, Cr, Pb, Fe, Sb and Tl) are exceedingly higher (several fold) than the WHO and US EPA guidelines. Predictive and correlation analysis shows that most trace elements exhibit a strong positive correlation among them indicating the same anthropogenic sources and biogeochemical processes regulate these trace elements within the pond. Distributions of the trace elements in water exhibit different shapes mostly as positively skewed distribution for As, Cd, Co, Cr, and Tl, symmetrical distribution for Fe and almost symmetrical distribution for Pb and Sb. Concentrations of As, Co and Tl accumulated much higher in different parts of the Bass than Tilapia fish. The concentrations of As, Tl, Co, and Sb appeared significantly higher in different parts of the body of both Bass and Tilapia than the maximum SRM certified values. Accumulation of these contaminants in fish tissues pose increased health risks to humans who consume these contaminated fish although fishing is prohibited. Anthropogenic activities in the region primarily degrade the whole pond ecosystem ecology of the Bartlett Pond and waters of this pond to be not recommended for any use. These findings may be useful for the scientific community and concerned authorities to improve understanding about these precious natural resources and conservation of the ecosystem ecology.展开更多
The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Popula...The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented.展开更多
The environmental issues confronted by traditional freshwater aquaculture are increasingly sedous, promoting development of ecological remediation technolo- gies. The in-situ remediation represented by fish-vegetable ...The environmental issues confronted by traditional freshwater aquaculture are increasingly sedous, promoting development of ecological remediation technolo- gies. The in-situ remediation represented by fish-vegetable mutualism mode (FVMM) and ex-situ remediation represented by recirculating aquaculture system (RAS) are highlights of related researches. In the paper, the advantages and disadvantages of FVMM and RAS were analyzed and area allocation was discussed in terms of eu- trophication and pond nitrogen cycle. The results showed that the FVMM could re- duce pollutant-discharge coefficient of fish ponds, but the ecological balance would still be hard to be achieved nationwide. In contrast, although the extra cost and land resources would produce inevitably, the application is of great significance in small regions, especially for eutrophication areas thanks for zero-discharge.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA2003020102)the National Natural Science Foundation of China (No. 41630636 and No. 41772325)the China Postdoctoral Science Foundation (No. 2019M653797)
文摘The original landform along the China Russia Crude Oil Pipeline(CRCOP,line 2)was disturbed during installation of pavement for the pipeline.Forest and vegetation coverage is dense,and runoff develops along the pipe.Since the opera tion of the CRCOP(line 2)began in 2018,ponding has appeared on both sides of the pipeline.If there is no drainage,ponding can hardly dissipate,due to the low permeability of the permafrost layer.With the supply of surface flow and the transportation of oil at positive temperatures,ponding promotes an increase in temperature and changes the boundary ther mal conditions of the pipeline.Meanwhile,when the ponding freezes and thaws,frost heave threatens operational safety of the pipeline.Furthermore,the ponding can affect the thermal condition of line 1.In this paper,the distribution of pond ing along the CRCOP was obtained by field investigation.The type and cause of ponding were summarized,and the catch ment and stream order were extracted by the Digital Elevation Model(DEM).According to the statistical results in attri butes for topographic factors,it is known that ponding along the pipeline is relative to elevation,slope,aspect,and the Topographic Wetness Index(TWI).Water easily accumulates at altitudes of 300450 m,slopes within 3°5°,aspect in the northeast or south,TWI within 1316,flow direction in north east south,and flow length within 90150 km.This paper proposes a theoretical basis for the cause and characteristics of ponding along the pipeline.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA2003020102)the China Postdoctoral Science Foundation(No.2019M653797)+1 种基金the National Natural Science Foundation of China(No.41630636 and No.41772325)the Major Program of the Bureau of International Cooperation,the Chinese Academy of Sciences(131B62KYSB20170012).
文摘Buried pipelines are widely used for transporting oil in remote cold regions. However, the warm oil can induce considerable thermal influence on the surrounding frozen soils and result in severe maintenance problems. This paper presents a case study of the thermal influence of ponding and buried warm-oil pipelines on permafrost along the China-Russia Crude Oil Pipeline(CRCOP) in Northeast China. Since its operation in 2011, the operation of the warm-oil pipelines has led to rapid warming and thawing of the surrounding permafrost and development of sizable ponding along the pipeline route,which, in return, exacerbates the permafrost degradation. A field study was conducted along a 400-km long segment of the CRCOP in permafrost regions of Northeast China to collect the location and size information of ponding. A two-dimensional heat transfer model coupled with phase change was established to analyze the thermal influence of ponding and the operation of warm-oil pipelines on the surrounding permafrost. In-situ measured ground temperatures from a monitoring site were obtained to validate the numerical model. The simulation results show that ponding accelerates the development of the thaw bulb around the pipeline. The maximum thaw depth below the pipeline increases from 4 m for the case without ponding to 9 m for the case with ponding after 50 years of operation, and ponding directly above the pipe induces the maximum thaw depth. Engineering measures should be adopted to control the size or even eliminate surface water-rich ponding for the long-term performance of buried warm-oil pipelines.
文摘The study area is located in the Lower Yom River Basin covering an area of about 970 km^2 in the lower part of Northern Thailand, which is underlain by sequences of unconsolidated alluvial deposits derived from the Yom and Nan River floodplains. Groundwater has been heavily exploited largely for agriculture from the shallow gravel, sand and silt aquifer in the basin. Drastically declining water levels, up to 10 m in some areas, has been observed within the past decade, creating difficulties with lift irrigation for the local farmers. Therefore, the Department of Groundwater Resources, Thailand, considers that groundwater artificial recharge may be useful for recovering the static water levels within the most hydrogeological suitable areas. The objective of the paper is to rank the suitability of sub-watershed in the Lower Yom River Basin for conducting a pilot-scale testing of MAR (managed aquifer recharge) by ponding system. Hydrogeological and non-hydrogeological parameters were used to formulate the site selection criteria. Boolean logic and Fuzzy logic were used for delineating the 19 sub-watersheds in the Lan Ba watershed. Detailed hydrogeological investigations were conducted in the 10 most prospective sub-watersheds. Of these, the Nong Na 3 sub-watershed covering an area of about 500 hectares was determined to be the most appropriate site for the MAR pilot construction and testing.
基金The National Key Research and Development Program of China under contract No.2018YFC1406102the Funds for the Distinguished Young Scientists of Hubei Province(China)under contract No.2019CFA057the National Natural Science Foundation of China under contract Nos 41941010 and 41776200。
文摘Information on the Arctic sea ice climate indicators is crucial to business strategic planning and climate monitoring.Data on the evolvement of the Arctic sea ice and decadal trends of phenology factors during melt season are necessary for climate prediction under global warming.Previous studies on Arctic sea ice phenology did not involve melt ponds that dramatically lower the ice surface albedo and tremendously affect the process of sea ice surface melt.Temporal means and trends of the Arctic sea ice phenology from 1982 to 2017 were examined based on satellite-derived sea ice concentration and albedo measurements.Moreover,the timing of ice ponding and two periods corresponding to it were newly proposed as key stages in the melt season.Therefore,four timings,i.e.,date of snow and ice surface melt onset(MO),date of pond onset(PO),date of sea ice opening(DOO),and date of sea ice retreat(DOR);and three durations,i.e.,melt pond formation period(MPFP,i.e.,MO–PO),melt pond extension period(MPEP,i.e.,PO–DOR),and seasonal loss of ice period(SLIP,i.e.,DOO–DOR),were used.PO ranged from late April in the peripheral seas to late June in the central Arctic Ocean in Bootstrap results,whereas the pan-Arctic was observed nearly 4 days later in NASA Team results.Significant negative trends were presented in the MPEP in the Hudson Bay,the Baffin Bay,the Greenland Sea,the Kara and Barents seas in both results,indicating that the Arctic sea ice undergoes a quick transition from ice to open water,thereby extending the melt season year to year.The high correlation coefficient between MO and PO,MPFP illustrated that MO predominates the process of pond formation.
基金This study was supported by the National Natural Science Foundation of China(U20A20148)the Major Science and Technology Projects of the Xizang(Tibet)Autonomous Region(XZ202201ZD0004G and XZ202201ZD0004G01).
文摘This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.
文摘Activity 1 Think about the following questions and write down your answers before reading the text.1.Suppose you are planning a trip to Antarctica and want to visit Don Juan Pond,what special preparations would you need to make compared to a normal trip?2.In your opinion,how could the unique features of Don Juan Pond be used to develop educational programs for high school students?
文摘Insects represent an important taxon for the functioning of ecosystems. They also contribute to human and animal nutrition and are vector agents of several diseases. In Congo-Brazzaville the diversity of entomofauna is very little known. The present study aimed to investigate ponds. The inventory of insects was conducted in ponds Ngatsouéné and Yo, the first one was located in the center of Djambala and the last one was 2 km from the center of the city. The insects were caught with an entomological net from 23rd to 24th December 2012. The study identifies 37 species belonging to 17 families and 7 orders. This entomofauna study showed a high proportion of the Orthoptera order (27.20%). Family Mantidae has the largest species number (13.51%). Mantis sp is the most abundant species (13.51%). This is a database and therefore, should be extended to different aquatic ecosystems of the Department of Plateaux. The results obtained during this study will contribute to the development of a database for the management of entomofauna in Congo.
文摘This study evaluates the dynamics of trace metals impacts on the ecosystems of the Bartlett Pond, a small shallow wetland pond located in Laredo, Texas by analyzing sediment samples taken from four quadrants of the pond. The concentrations of trace elements in sediment samples are highest for iron (Fe), followed by chromium (Cr), then lead (Pb), with lower concentration of antimony (Sb), cobalt (Co), arsenic (As), cadmium (Cd), and the lowest concentration being thallium (Tl) within Bartlett Pond. The sediment quality of the pond is acceptable for organisms and the environment as trace element concentrations (e.g. As, Cd, Cr, and Pb) are within the probable effect concentration (PEC) of National Ocean and Atmospheric Administration (NOAA) guidelines although the PEC values for Co, Fe, Sb and Tl are not given. Bivariate and multivariate correlation analysis shows that most trace elements exhibit a strong positive correlation among them indicating the same anthropogenic sources and biogeochemical processes control these trace elements concentrations within the pond. We provided a comprehensive snapshot of trace element concentrations in sediments through descriptive analysis, laying the foundation for future environmental risk assessments. Correlation analysis of eight trace elements helped identify relationships, offering insights into pollution sources and potential health impacts. Additionally, univariate and multivariate predictive analyses generated numerous models, extending beyond the interpretation of partial and full regression coefficients. We also included graphical analyses of trace element variations, which are critical for understanding environmental processes and geochemical patterns. These findings advance our understanding about trace metals dynamics in sediments and may be a valuable reference for ecosystems and environmental management of different landscapes.
基金funded by the National Natural Science Foundation of China(No.32470553).
文摘Food abundance and availability constitute fundamental determinants of foraging habitat quality for waterbirds, with high-quality foraging habitats playing a crucial role in supporting the survival and annual life cycle of wintering populations. The ongoing degradation and loss of optimal habitats have forced wintering waterbirds to increasingly rely on alternative foraging sites and modify their behavioral adaptation strategies to cope with food scarcity. The Siberian Crane (Leucogeranus leucogeranus), a large-bodied endangered waterbird species characterized by specialized dietary preferences, demonstrates particular sensitivity to environmental alterations. Faced with diminishing suitable habitats and declining natural food resources, this species has progressively adapted to utilizing artificial habitats, including agricultural landscapes such as paddy fields and lotus ponds, as supplementary wintering foraging grounds to fulfill their energetic requirements. This study examines the hypothesis that Siberian Cranes adapt their foraging behavior through plastic behavioral strategies in artificial habitats under conditions of limited food availability, thereby enhancing population fitness. A comparative analysis of crane foraging behaviors was conducted between mudflats and lotus ponds throughout the 2023–2024 wintering period. This investigation focused on three critical environmental factors: food abundance, food burial depth, and sediment penetrability, examining their influence on foraging patterns across these distinct habitats. The results revealed significant inter-habitat differences: foraging success rates were substantially higher (p < 0.05) and food handling times markedly longer in lotus ponds compared to mudflats, whereas foraging effort and attempt frequency were significantly elevated in mudflat habitats. The superior food availability in lotus ponds facilitated enhanced foraging success rates, enabling cranes to accumulate essential energy reserves for winter survival. However, the deeper burial depth of lotus roots in these habitats required more intensive processing behaviors, including prolonged digging, breaking, and swallowing activities, which consequently increased handling time by approximately 40% and reduced foraging attempts by 25–30% compared to mudflat conditions. These behavioral trade-offs suggest that while lotus ponds provide adequate food resources, their structural characteristics may impose physiological constraints that limit their effectiveness as optimal foraging grounds for Siberian Cranes. These findings offer valuable insights into the behavioral plasticity of wintering Siberian Cranes response to spatial variations in food resource distribution, while contributing to our understanding of the ecological value of lotus roots as alternative winter food sources in artificial wetland ecosystems.
基金Financial support was provided by Secretaría de Cienciay Técnica-Universidad Nacional de Río Cuarto(SECyTUNRC,Grant PPI 18/C416)Fondo para la Investigación Científca y Tecnológica(FONCyT,Grant PICT BIDPICT 0981-20182530-2019).
文摘Wetlands are unique ecological environments capable of harboring high biodiversity.However,urbanization can degrade,eliminate,or transformthese habitats.Although amphibians utilize habitats created by humans in urban landscapes,few studies have investigated the infuence of thehabitat quality on the life history of anurans.We assessed life history traits such as snout-vent length(SVL),body condition,and reproductiveinvestment in the South American common toad Rhinella arenarum,to determine whether urbanization is harmful or benefcial to this species.We sampled wetlands with different levels of urbanization in Río Cuarto city,Córdoba,Argentina.We recorded males with lower SVL in mediumurbanized wetlands and those with the highest SVL in both low and high urbanization categories,similar to what was found for body conditionswith males with low body conditions inhabiting wetlands with a medium degree of urbanization.In females,lower SVL was recorded in mediumurbanization and highest SVL in high and low urbanization.It is observed that females recorded in highly urbanized wetlands have a very lowbody condition.The reproductive investment parameters were not signifcantly different,but we observed an association between a greaternumber of eggs and clutch size with wetlands of low urbanization.These results show a variability of responses of R.arenarum to urbanization,which could be due to phenotypic plasticity in its life history parameters,allowing it to inhabit urban areas.Continuous monitoring of the speciesin these wetlands is needed to determine if these biological responses are temporary or persistent.
基金The National Natural Science Foundation of China under contract Nos 42175172 and 41975134.
文摘Melt ponds are significant physical features on the ice surface throughout the Arctic summer,and the scarcity of observational data has resulted in a vague understanding about it.This study employs satellite data and multi-model averaged outputs from Coupled Model Intercomparison Project Phase 6(CMIP6)to analyze the spatiotemporal evolution characteristics of Arctic melt ponds and their relationship with sea ice thickness(SIT)and atmospheric energy flux.The ponds first emerge at lower latitudes and gradually extend to cover central ice areas as the season progresses,then persisting longer and covering larger total areas in the central region,with peak areas exceeding 0.6×10^(6)km^(2),which is four to five times that of other marginal areas.Over the past two decades,pond coverage has exhibited markedly different trends with slight decreases in the marginal seas but significant increases in the central area.Both CMIP6 and satellite data indicate that the sea ice carrying capacity,related to thickness,plays a crucial role in creating these differences.There is a marked increasing pond in areas with thicker ice.When the SIT falls below a certain threshold,however,sea ice melting results in decreased pond coverage.Additionally,the energy balance on the ice surface also dramatically impacts pond changes.For instance,the overall pond changes in central area are influenced by net longwave radiation and latent heat,with anomalies in these fluxes correlating highly(up to 0.8)with pond anomalies.Meanwhile,net shortwave radiation primarily causes local pond anomalies through the pond-shortwave feedback only under the clear weather conditions.
基金funded by the Natural Science Foundation of Fujian Province(Grant No.2023J011133)。
文摘Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h.
文摘The main consequences of climate change in the Sahel have been the metamorphosis of surface conditions. These metamorphoses have resulted in surface degradation, of which silting up of watersheds is the main phenomenon. The objective of this study is to assess the environmental trends of the Kourfa pond watershed. The study is based on diachronic mapping with Landsat satellite images and Google Earth images, over the period 1986 to 2021. The study reveals that vegetation (whose rate of regression doubled between 1986 and 2021) has decreased to the benefit of crop areas (whose rate of increase multiplied by 3.61 between 1986 and 2021). Bare soil and encrusted areas have also decreased, with regression rates almost double than those of 1986. In addition, the Kourfa waterholes have experienced two types of changes over 35 years: one progressive between 2011 and 2016 and the other regressive between 2001 and 2021 compared to 1986. The ravine network has been multiplied by a factor of 2.4, with density more than doubled and the connectivity of the hydrographic networks has risen from 2 to 4, with significant bank recession. This dynamic of the Kourfa pond is linked to the high drainage, the increasing complexity of the gully network and the erosion due to the retreat of the watershed banks, all of which contribute to the silting-up of the Kourfa watershed.
文摘The purpose of this study was to evaluate the effects of retention ponds on the environment and population health by analyzing water samples from various ponds in Mogadishu, to determine the prevalence of waterborne illnesses that occur during the rainy season in Mogadishu, and to find out what experts thought about the effects of retention ponds on the environment as well as population health in Mogadishu. Methods: Mixed designs were used in the study. The first design is an exploratory study where samples are taken from different retention ponds in Mogadishu. The second design involves gathering secondary data from the online FSNAU Dashboard regarding the incidence of rainfall and waterborne illnesses including malaria and cholera. Additionally, a cross-sectional survey of expert opinions using questionnaires was the third design. The 10 water samples were taken from retention ponds in Mogadishu as part of the sample size. Data on the fourth month was also gathered using the FNSAU dashboard, and seventy sample sizes were used for the expert self-administered questionnaire for the third design. Excel was used for data analysis in the initial design. While BMI SPSS versions 22 were used to analyze the data from the Self-administered Questionnaire, additional methods were utilized to compute descriptive statistics, such as mean and standard deviation, and to analyze demographic data in a frequency table. Findings: The results show that three samples had unsatisfactory scores (Grade D): Yaqshid (Warshadda Bastada) had a WQI of 80.85, Boondheer (Bondher Pond) had a WQI of 80.64, and Wartanabad (Xamar Jadiid Pond) had a WQI of 80.89. The remaining samples were all rated as fair (grade), which indicates that they ranged from 50 to 75. The months with the largest rainfall already occurred in December, November, and October, when the prevalence of diseases during the rainy season was highest for cholera cases. Although October and December saw a significant number of malaria cases, November did not. Retention ponds’ overall effects on residential environments were evaluated, and the results showed that the standard deviation was 0.802 and the cumulative average mean scores were 4.41 overall. This indicates that the respondents were in agreement that retention ponds in Mogadishu, Somalia, had an effect on residential areas. Recommendation: The study suggested that in order to identify retention pond contamination and create treatment units for its management, the Ministry of Health forms a district-level public health committee. All districts must have a sewer system installed by the local government, and retention ponds must be made easier in order to move waste outside of the city.
基金supported by AF-NSFC mobility program from the Academy of Finland(Grant no.333170)National Natural Science Foundation of China(Grant no.52211530038).
文摘Antarctic continental lakes and ponds are among the most impoverished aquatic environments on earth but many of them support flourishing populations of cyanobacteria,eukaryotic algae,protozoans,and some multicellular animals.In this study,we present results of a microscopic analysis of cyanobacteria and eukaryotic algae from nine diverse types of Antarctic continental water bodies during one austral summer.The results supplement and enlarge our previous studies on the limnological characteristics of the epiglacial and supraglacial lakes and ponds in Dronning Maud Land,an area that has received little attention from limnologists.The taxon with highest frequency among the samples(n=79)was Mesotaenium cf.berggrenii,a eukaryotic Zygnematophyceae,which occurred in 82%of the samples with a maximum cell density of 68 cells·mL^(-1).The taxa with second and third highest frequency were the prokaryotes Gloeocapsopsis(60%)and Leptolyngbya(41%),followed by Chlamydomonas(34%)and Cyanothece(29%).The number of taxa varied between 7-21 among the lakes and ponds,being highest in a supraglacial lake,and lowest in an epiglacial lake.The results did not reveal any obvious correlation between the abundance of any taxa and the water chemistry,but water bodies with inorganic sediments had higher cell densities and biomasses than those without sediment.This suggests the importance of sediment in supporting biological diversity in these ultraoligotrophic lakes and ponds.
基金supported by the Natural Sciences and Engineering Research Council of Canada[RGPIN-2021-03624].
文摘The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in staging and wintering areas,methods to identify and target high-quality breeding habitats that result in the greatest potential for wildlife are still required.This is particularly true for species that breed in remote,inaccessible areas such as the American black duck,an intensively managed game bird in Eastern North America.Although evidence suggests that black ducks prefer productive,nutrient-rich waterbodies,such as beaver ponds,information about the distribution and quality of these habitats across the vast boreal forest is lacking with accurate identification remaining a challenge.Continuing advancements in remote sensing technologies that provide spatially extensive and temporally repeated information are particularly useful in meeting this information gap.In this study,we used multi-source remotely sensed information and a fuzzy analytical hierarchy process to map the spatial distribution of beaver ponds in Ontario.The use of multi-source data,including a Digital Elevation Model,a Sentinel-2 Multi-Spectral Image,and RadarSat 2 Polarimetric data,enabled us to identify individual beaver ponds on the landscape.Our model correctly identified an average of 83.0%of the known beaver dams and 72.5%of the known beaver ponds based on validation with an independent dataset.This study demonstrates that remote sensing is an effective approach for identifying beaver-modified wetland features and can be applied to map these and other wetland habitat features of interest across large spatial extents.Furthermore,the systematic acquisition strategy of the remote sensors employed is well suited for monitoring changes in wetland conditions that affect the availability of habitats important to waterfowl and other wildlife.
文摘The trace elements chemistry of Bartlett Pond, a small shallow wetland pond in Laredo, Southern Texas, was sampled to evaluate the dynamics of trace elements impacts on water quality and ecosystems ecology of the pond. Two types of fish (bass and tilapia) were also sampled to see the trace element accumulation in different parts of their body. The concentrations of trace elements in water samples were found in the following order: Fe ≫Sb > Pb > As ≫Co > Tl > Cr > Cd within Bartlett Pond. Overall, the water quality of the pond is unacceptable for drinking and any other purposes as trace element concentrations (e.g. As, Cd, Co, Cr, Pb, Fe, Sb and Tl) are exceedingly higher (several fold) than the WHO and US EPA guidelines. Predictive and correlation analysis shows that most trace elements exhibit a strong positive correlation among them indicating the same anthropogenic sources and biogeochemical processes regulate these trace elements within the pond. Distributions of the trace elements in water exhibit different shapes mostly as positively skewed distribution for As, Cd, Co, Cr, and Tl, symmetrical distribution for Fe and almost symmetrical distribution for Pb and Sb. Concentrations of As, Co and Tl accumulated much higher in different parts of the Bass than Tilapia fish. The concentrations of As, Tl, Co, and Sb appeared significantly higher in different parts of the body of both Bass and Tilapia than the maximum SRM certified values. Accumulation of these contaminants in fish tissues pose increased health risks to humans who consume these contaminated fish although fishing is prohibited. Anthropogenic activities in the region primarily degrade the whole pond ecosystem ecology of the Bartlett Pond and waters of this pond to be not recommended for any use. These findings may be useful for the scientific community and concerned authorities to improve understanding about these precious natural resources and conservation of the ecosystem ecology.
文摘The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented.
基金Supported China Agriculture Research System (CARS-49)National Nonprofit InstituteResearch Grant of Freshwater Fisheries Research Center,CAFS (2011JBFA15)~~
文摘The environmental issues confronted by traditional freshwater aquaculture are increasingly sedous, promoting development of ecological remediation technolo- gies. The in-situ remediation represented by fish-vegetable mutualism mode (FVMM) and ex-situ remediation represented by recirculating aquaculture system (RAS) are highlights of related researches. In the paper, the advantages and disadvantages of FVMM and RAS were analyzed and area allocation was discussed in terms of eu- trophication and pond nitrogen cycle. The results showed that the FVMM could re- duce pollutant-discharge coefficient of fish ponds, but the ecological balance would still be hard to be achieved nationwide. In contrast, although the extra cost and land resources would produce inevitably, the application is of great significance in small regions, especially for eutrophication areas thanks for zero-discharge.