The issue of microplastic(MPs)pollution has received increased attention in recent years.Studies have indicated that inhalation of microplastics may result in the cardiovascular harm.However,the specific mechanism rem...The issue of microplastic(MPs)pollution has received increased attention in recent years.Studies have indicated that inhalation of microplastics may result in the cardiovascular harm.However,the specific mechanism remains to be elucidated.In this study,5μm polystyrene microplastics(PS-MPs)were employed to construct in vivo and in vitro exposure models to investigate the potential mechanisms of microplastic-induced cardiac fibrosis.In vivo model of respiratory exposure to MPs,echocardiography observed a decrease in systolic-diastolic function of the mouse heart,and myocardial tissue showed significant mitochondrial morphological abnormalities and myocardial fibrosis.In vitro models also revealed upregulation of fibrosis indicators in human cardiomyocytes AC16 cells.Transcriptome and RT-qPCR assay exposed that ferroptosis-related pathways were significantly gath-ered in the MPs group,with decreased expression of ferroptosis related genes SLC7A11 and GPX4.Liproxstatin-1(Lip-1),a ferroptosis inhibitor,significantly ameliorated MPs-induced cardiomyocyte fibrosis and ferroptosis.We further demonstrated that inhibition of hypoxia-inducible factor𝛼(HIF-𝛼)and oxidative stress ameliorated PS-MPs-induced cardiomyocyte ferroptosis,and thus upregulation of the HIF pathway and oxidative stress may be the upstream mechanism of MPs-induced ferroptosis in myocardial fibrosis.Above all,our study demonstrated that MPs exposure resulted in cardiac fibrosis via the HIF-ROS-SLC7A11/GPX4 signaling pathway.展开更多
Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems,yet their impact on zebrafish(Danio rerio)embryonic development,particularly erythropoiesis,remains underexplored.This study used si...Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems,yet their impact on zebrafish(Danio rerio)embryonic development,particularly erythropoiesis,remains underexplored.This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos.In vivo validation experiments corroborated the transcriptomic findings,revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation,as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.Additionally,impaired heme synthesis further contributed to the diminished erythrocyte population.These findings underscore the toxic effects of polystyrene nanoparticles on hematopoietic processes,highlighting their potential to compromise organismal health in aquatic environments.展开更多
The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Z...The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Zophobas morio larvae are capable of consuming and breaking down EPS within their digestive tracts by minimizing the spread of microplastics. Studies of the consumption of EPS by Z. morio larvae are typically conducted under white or no visible light treatments. This study tested whether the color of visible light influenced the consumption rate of EPS by Z. morio larvae. If Z. morio larvae consume EPS under visible light, then visible light will influence the amount of EPS consumed. If results suggest that the consumption rate is influenced by visible light colors, then Z. morio larvae could be a solution for recycling EPS. This study’s procedure placed Z. morio larvae into 25 jars under one of six visible light treatments of red, yellow, green, blue, white, and no visible light. Each jar contained a pre-weighed block of EPS and six Z. morio larvae. After two weeks, the Z. morio larvae were removed from the jars, and the difference between each pre-weighed EPS block and the weight of the same partially consumed block was recorded in three trials. The data indicates that green and blue visible light treatments resulted in the greatest amount of EPS consumed by Z. morio larvae while the red and yellow had the least amount of EPS consumed by the Z. morio larvae. In conclusion, results indicate that green and blue visible light, compared to the no visible light treatment, could be used to influence the Z. morio larvae to consume more EPS. Green and blue visible light and Z. morio larvae could make the recycling process of EPS more environmentally friendly when used in households or by local environmental organizations.展开更多
The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,...The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,As(Ⅴ)and Sb(Ⅴ),which are predominant compared with the trivalent species,As(Ⅲ)and Sb(Ⅲ),in surface waters.Here,we synthesized a novel composite adsorbent,amine-functionalized polystyrene resin loaded with nano TiO_(2)(Am PSd-Ti).The mm-scale spheres showed outstanding adsorption capacities for As(Ⅲ),As(Ⅴ),Sb(Ⅲ),and Sb(Ⅴ)at 73.85,153.29,86.80,and 123.71 mg/g,respectively.Am PSd-Ti exhibited selective adsorption for As and Sb in the presence of Cl^(-),NO_(3)^(-),SO_(4)^(2-),and F^(-).As and Sb were adsorbed by the nano-sized TiO_(2)confined in the porous resin via forming innersphere complexes.The protonated amine groups enhanced the adsorption of As(Ⅴ)and Sb(Ⅴ)by electrostatic attraction and hydrogen bonding,which was confirmed by experimental results and molecular dynamics simulations.Fixed-bed column tests showed breakthrough curves with adsorption capacities of1.38 mg/g(6600 BV)and 6.65 mg/g(1260 BV)upon treating real As-contaminated groundwater and Sbcontaminated industrial wastewater.Our study highlights a feasible strategy by incorporating inorganic metal oxides into organic polymers to achieve highly efficient removal of As and Sb in real-world scenarios.展开更多
Microplastics(MPs)have garnered significant international scrutiny as an emerging environmental pollutant,constituting one of the four principal global environmental threats and posing potential health hazards to huma...Microplastics(MPs)have garnered significant international scrutiny as an emerging environmental pollutant,constituting one of the four principal global environmental threats and posing potential health hazards to humans.However,data on the impact of MPs on the early life of the commercially important fish remain limited.In this study,polystyrene microspheres(PS-MPs)(1 and 5μm)were used to investigate the effects of MPs on the growth,development,and metabolism in early life stages of large yellow croaker Pseudosciaena crocea.Results indicate that MPs were enriched in the gastrointestinal tract and gills of the fish.In addition,PS-MPs(1μm)exhibited no obvious effects on embryo hatching and heart rates,while increased the mortality rate(23.00%vs.control 14.99%)and decreased the body length(4098.61±447.03μm vs.control with 2827.04±254.75μm)of the larvae at the highest exposure concentration(5×10^(4)items/L).Metabolomics analysis revealed that PS-MPs(5μm)induced mild perturbations in phospholipid metabolism,specifically alterations in phosphatidylethanolamine(PE)levels.These changes influenced the cell membranes of juvenile fish,and consequently elicited inflammatory responses,disrupted lipid homeostasis,and affected other critical physiological processes.Ultimately,these effects may avoid the growth retardation and potential mortality.Therefore,PS-MPs could affect negatively the fish health in the early life stage,which has implications for aquatic ecosystems.展开更多
Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interfac...Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion.展开更多
Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMM...Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMMA content on their transparency and pulse shape discrimination(PSD)ability is investigated.The fabricated samples,comprising a polystyrene(PS)-PMMA matrix,30.0 wt%2,5-diphenyloxazole(PPO),and 0.2 wt%9,10-diphenylanthracene(DPA),exhibit high transparency with transmissivity ranging from 70.0 to 90.0%(above 415.0 nm)and demonstrate excellent n/γdiscrimination capability.Transparency increased with increasing PMMA content across the entire visible light spectrum.However,the PSD performance gradually deteriorated when the aromatic matrix was replaced with PMMA.The scintillator containing 20.0 wt%PMMA demonstrated the best stability concerning PSD properties and relative light yields.展开更多
Nanoplastics exhibit greater environmental biotoxicity than microplastics and can be ingested by humans through major routes such as tap water,bottled water and other drinking water.Nanoplastics present a challenge fo...Nanoplastics exhibit greater environmental biotoxicity than microplastics and can be ingested by humans through major routes such as tap water,bottled water and other drinking water.Nanoplastics present a challenge for air flotation due to their minute particle size,negative surface potential,and similar density to water.This study employed dodecyltrimethylammonium chloride(DTAC)as a modifier to improve conventional air flotation,which significantly enhanced the removal of polystyrene nanoplastics(PSNPs).Conventional air flotation removed only 3.09%of PSNPs,while air flotation modified by dodecyltrimethylammonium chloride(DTAC-modified air flotation)increased the removal of PSNPs to 98.05%.The analysis of the DTAC-modified air flotation mechanism was conducted using a combination of instruments,including a zeta potential analyzer,contact angle meter,laser particle size meter,high definition camera,scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and Fourier transform infrared spectrometer(FTIR).The results indicated that the incorporation of DTAC reversed the electrostatic repulsion between bubbles and PSNPs to electrostatic attraction,significantly enhancing the hydrophobic force in the system.This,in turn,improved the collision adhesion effect between bubbles and PSNPs.The experimental results indicated that even when the flotation time was reduced to 7min,the DTACmodified air flotation still achieved a high removal rate of 96.26%.Furthermore,changes in aeration,pH,and ionic strength did not significantly affect the performance of the modified air flotation for the removal of PSNPs.The removal rate of PSNPs in all three water bodies exceeded 95%.The DTAC-modified air flotation has excellent resistance to interference from complex conditions and shows great potential for practical application.展开更多
Polystyrene(PS)waste was depolymerized using a low-temperature pyrolysis treatment(LTPT)to increase its caking index.The mechanism of caking index modification was revealed by using Fourier transform infrared spectros...Polystyrene(PS)waste was depolymerized using a low-temperature pyrolysis treatment(LTPT)to increase its caking index.The mechanism of caking index modification was revealed by using Fourier transform infrared spectroscopy,thermogravimetric(TG)analysis,pyrolysis-gas chromatography with mass spectrometric detection,and solid-state^(13)C nuclear magnetic resonance spectroscopy.The crucible coal-blending coking tests were carried out using an industrial coal mixture and the treated-PS with the highest caking index(PS300)or raw PS.Some properties of the resultant cokes were also analyzed.It was demonstrated that the caking index of PS dramatically increased by LTPT;however,exceeding 300℃ did not yield any benefit.The caking index increased due to the formation of the caking components,whose molecules are medium in size,caused by LTPT.Additionally,the coke reactivity index of the coke obtained from the mixture containing PS300 decreased by 5.1%relative to that of the coke made from the mixture with PS and the coke strength after reaction index of the former increased by 7.3% compared with that of the latter,suggesting that the ratio of depolymerized PS used for coal-blending coking could increase relative to that of PS.展开更多
Chloromethylation of polystyrene (PS) with two different chloromethylating systems methylal/thionyl chloride and paraformaldehyde/trimethylchlorosilane was studied. Soluble chloromethylated polystyrene with a degree...Chloromethylation of polystyrene (PS) with two different chloromethylating systems methylal/thionyl chloride and paraformaldehyde/trimethylchlorosilane was studied. Soluble chloromethylated polystyrene with a degree of substitution of 89% was obtained. The Conant-Finkelstein reaction on the chloromethylated PS afforded soluble iodomethylated polystyrene with a degree of substitution as high as 96%. The reaction conditions of Minisci were employed to radically pyridinate PS via its iodomethylated derivative. Polyelectrolytes were formed which could be converted to normal polymers by treatment with a 20% aqueous solution of NaOH.展开更多
The dielectric and mechanical properties of hybrid polymer nanocomposites of polystyrene/polyaniline/carbon nanotubes coated with polyaniline (pCNTs) have been investigated using impedance analyzer and extensometer....The dielectric and mechanical properties of hybrid polymer nanocomposites of polystyrene/polyaniline/carbon nanotubes coated with polyaniline (pCNTs) have been investigated using impedance analyzer and extensometer. The blends of PS/PANI formed the heterogeneous phase separated morphology in which pCNTs are dispersed uniformly. The incorporation of a small amount of pCNTs into the blend of PS/PANI has remarkably increased the dielectric properties. Similarly, the AC conductivity of PS/PANI is also increased five orders of magnitude from 1.6 × 10^-10 to 2.0×10^-5 S.cm-1 in the hybrid nanocomposites. Such behavior of hybrid nanocomposites is owing to the interfacial polarization occurring due to the presence of multicomponent domains with varying conductivity character of the phases from insulative PS to poor conductor PANI to highly conductive CNTs. Meanwhile, the tensile modulus and tensile strength are also enhanced significantly up to 55% and 160%, respectively, without much loss of ductility for three phase hybrid nanocomposites as compared to the neat PS. Thereby, the hybrid nanocomposites of PS/PANI/pCNTs become stiffer, stronger and tougher as compared to the neat systems.展开更多
Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,w...Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.展开更多
Macroporous polystyrene microsphere/graphene oxide(PS/GO) composite monolith was first prepared using Pickering emulsion droplets as the soft template. The Pickering emulsion was stabilized by PS/GO composite partic...Macroporous polystyrene microsphere/graphene oxide(PS/GO) composite monolith was first prepared using Pickering emulsion droplets as the soft template. The Pickering emulsion was stabilized by PS/GO composite particles in-situ formed in an acidic water phase. With the evaporation of water and the oil phase(octane), the Pickering emulsion droplets agglomerated and combined with each other, forming a three-dimensional macroporous PS/GO composite matrix with excellent mechanical strength. The size of the macrospores ranged from 4 mm to 20 mm. The macroporous PS/GO composite monolith exhibited high adsorption capacity for tetracycline(TC) in an aqueous solution at p H 4–6. The maximum adsorption capacity reached 197.9 mg g 1at p H 6. The adsorption behaviour of TC fitted well with the Langmuir model and pseudo-second-order kinetic model. This work offers a simple and efficient approach to fabricate macroporous GO-based monolith with high strength and adsorption ability for organic pollutants.展开更多
Luminescent polystyrene microspheres were easily fabricated from poly(styrene-co-methacrylic acid)and aqueous RE(III) chloride solution(RE=Eu, Tb) in the presence of 2,20-bipyridine as second ligand. The negative char...Luminescent polystyrene microspheres were easily fabricated from poly(styrene-co-methacrylic acid)and aqueous RE(III) chloride solution(RE=Eu, Tb) in the presence of 2,20-bipyridine as second ligand. The negative charges of carboxyl groups on the surface of microspheres coordinated with rare earth ions at first, such as complexes covalently linked to 2,20-bipyridine, resulting in strong photoluminescence. Various methods, including transmission electron microscope(TEM), scanning electron microscope(SEM), energy dispersive spectroscopy(EDS),Fourier transform infrared spectroscopy(FT-IR), and fluorescence spectrophotometer, were used to characterize the resultant polystyrene composite microspheres. This work highlights the idea that it is facile to synthesis luminescent microspheres by surface-modified method directly.展开更多
Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,...Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.展开更多
基金supported by the National Natural Science Foundation of China(No.82073520).
文摘The issue of microplastic(MPs)pollution has received increased attention in recent years.Studies have indicated that inhalation of microplastics may result in the cardiovascular harm.However,the specific mechanism remains to be elucidated.In this study,5μm polystyrene microplastics(PS-MPs)were employed to construct in vivo and in vitro exposure models to investigate the potential mechanisms of microplastic-induced cardiac fibrosis.In vivo model of respiratory exposure to MPs,echocardiography observed a decrease in systolic-diastolic function of the mouse heart,and myocardial tissue showed significant mitochondrial morphological abnormalities and myocardial fibrosis.In vitro models also revealed upregulation of fibrosis indicators in human cardiomyocytes AC16 cells.Transcriptome and RT-qPCR assay exposed that ferroptosis-related pathways were significantly gath-ered in the MPs group,with decreased expression of ferroptosis related genes SLC7A11 and GPX4.Liproxstatin-1(Lip-1),a ferroptosis inhibitor,significantly ameliorated MPs-induced cardiomyocyte fibrosis and ferroptosis.We further demonstrated that inhibition of hypoxia-inducible factor𝛼(HIF-𝛼)and oxidative stress ameliorated PS-MPs-induced cardiomyocyte ferroptosis,and thus upregulation of the HIF pathway and oxidative stress may be the upstream mechanism of MPs-induced ferroptosis in myocardial fibrosis.Above all,our study demonstrated that MPs exposure resulted in cardiac fibrosis via the HIF-ROS-SLC7A11/GPX4 signaling pathway.
基金supported by the Institute for Basic Science (IBS-R022-D1)Global Learning&Academic Research Institution for Master’s/Ph D students and Post-Doc Program of the National Research Foundation of Korea Grant funded by the Ministry of Education (RS-2023-00301938)+1 种基金National Research Foundation of Korea Grant funded by the Korean government (RS-2024-00406152,MSIT)Additional financial support was provided by the 2024 Post-Doc Development Program of Pusan National University,Korea Medical Institute,and KREONET。
文摘Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems,yet their impact on zebrafish(Danio rerio)embryonic development,particularly erythropoiesis,remains underexplored.This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos.In vivo validation experiments corroborated the transcriptomic findings,revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation,as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.Additionally,impaired heme synthesis further contributed to the diminished erythrocyte population.These findings underscore the toxic effects of polystyrene nanoparticles on hematopoietic processes,highlighting their potential to compromise organismal health in aquatic environments.
文摘The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Zophobas morio larvae are capable of consuming and breaking down EPS within their digestive tracts by minimizing the spread of microplastics. Studies of the consumption of EPS by Z. morio larvae are typically conducted under white or no visible light treatments. This study tested whether the color of visible light influenced the consumption rate of EPS by Z. morio larvae. If Z. morio larvae consume EPS under visible light, then visible light will influence the amount of EPS consumed. If results suggest that the consumption rate is influenced by visible light colors, then Z. morio larvae could be a solution for recycling EPS. This study’s procedure placed Z. morio larvae into 25 jars under one of six visible light treatments of red, yellow, green, blue, white, and no visible light. Each jar contained a pre-weighed block of EPS and six Z. morio larvae. After two weeks, the Z. morio larvae were removed from the jars, and the difference between each pre-weighed EPS block and the weight of the same partially consumed block was recorded in three trials. The data indicates that green and blue visible light treatments resulted in the greatest amount of EPS consumed by Z. morio larvae while the red and yellow had the least amount of EPS consumed by the Z. morio larvae. In conclusion, results indicate that green and blue visible light, compared to the no visible light treatment, could be used to influence the Z. morio larvae to consume more EPS. Green and blue visible light and Z. morio larvae could make the recycling process of EPS more environmentally friendly when used in households or by local environmental organizations.
基金financial support of the National Natural Science Foundation of China(No.42230706)the Outstanding Youth Science Fund(Overseas)of Shandong Provincial Natural Science Foundation(No.2022HWYQ-015)+1 种基金the Taishan Scholars Project Special Fund(No.tsqn202211039)Qilu Youth Talent Program of Shandong University(No.61440082163171)。
文摘The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,As(Ⅴ)and Sb(Ⅴ),which are predominant compared with the trivalent species,As(Ⅲ)and Sb(Ⅲ),in surface waters.Here,we synthesized a novel composite adsorbent,amine-functionalized polystyrene resin loaded with nano TiO_(2)(Am PSd-Ti).The mm-scale spheres showed outstanding adsorption capacities for As(Ⅲ),As(Ⅴ),Sb(Ⅲ),and Sb(Ⅴ)at 73.85,153.29,86.80,and 123.71 mg/g,respectively.Am PSd-Ti exhibited selective adsorption for As and Sb in the presence of Cl^(-),NO_(3)^(-),SO_(4)^(2-),and F^(-).As and Sb were adsorbed by the nano-sized TiO_(2)confined in the porous resin via forming innersphere complexes.The protonated amine groups enhanced the adsorption of As(Ⅴ)and Sb(Ⅴ)by electrostatic attraction and hydrogen bonding,which was confirmed by experimental results and molecular dynamics simulations.Fixed-bed column tests showed breakthrough curves with adsorption capacities of1.38 mg/g(6600 BV)and 6.65 mg/g(1260 BV)upon treating real As-contaminated groundwater and Sbcontaminated industrial wastewater.Our study highlights a feasible strategy by incorporating inorganic metal oxides into organic polymers to achieve highly efficient removal of As and Sb in real-world scenarios.
基金Supported by the Pioneer and Leading Goose R&D Program of Zhejiang(No.2023C03130)the National Key R&D Program of China(No.2019YFD0901101)+4 种基金the National Natural Science Foundation of China(No.42076169)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Nos.SL2022ZD203,SL2022MS012)the Zhejiang Provincial Natural Science Founds for Distinguished Young Scientists(No.LR21D060001)the State Key Laboratory of Satellite Ocean Environment Dynamics(No.SOEDZZ1902)the ChinaAPEC Cooperation Fund(No.2029901)。
文摘Microplastics(MPs)have garnered significant international scrutiny as an emerging environmental pollutant,constituting one of the four principal global environmental threats and posing potential health hazards to humans.However,data on the impact of MPs on the early life of the commercially important fish remain limited.In this study,polystyrene microspheres(PS-MPs)(1 and 5μm)were used to investigate the effects of MPs on the growth,development,and metabolism in early life stages of large yellow croaker Pseudosciaena crocea.Results indicate that MPs were enriched in the gastrointestinal tract and gills of the fish.In addition,PS-MPs(1μm)exhibited no obvious effects on embryo hatching and heart rates,while increased the mortality rate(23.00%vs.control 14.99%)and decreased the body length(4098.61±447.03μm vs.control with 2827.04±254.75μm)of the larvae at the highest exposure concentration(5×10^(4)items/L).Metabolomics analysis revealed that PS-MPs(5μm)induced mild perturbations in phospholipid metabolism,specifically alterations in phosphatidylethanolamine(PE)levels.These changes influenced the cell membranes of juvenile fish,and consequently elicited inflammatory responses,disrupted lipid homeostasis,and affected other critical physiological processes.Ultimately,these effects may avoid the growth retardation and potential mortality.Therefore,PS-MPs could affect negatively the fish health in the early life stage,which has implications for aquatic ecosystems.
基金financially supported by the National Natural Science Foundation of China(Nos.22172028,21903015,and 22403017)Natural Science Foundation of Fujian Province of China(No.2022J05041)。
文摘Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion.
基金supported by the National Natural Science Foundation of China(No.12027813)the fund of National Innovation Center of Radiation Application of China(Nos.KFZC2020020501,KFZC2021010101).
文摘Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMMA content on their transparency and pulse shape discrimination(PSD)ability is investigated.The fabricated samples,comprising a polystyrene(PS)-PMMA matrix,30.0 wt%2,5-diphenyloxazole(PPO),and 0.2 wt%9,10-diphenylanthracene(DPA),exhibit high transparency with transmissivity ranging from 70.0 to 90.0%(above 415.0 nm)and demonstrate excellent n/γdiscrimination capability.Transparency increased with increasing PMMA content across the entire visible light spectrum.However,the PSD performance gradually deteriorated when the aromatic matrix was replaced with PMMA.The scintillator containing 20.0 wt%PMMA demonstrated the best stability concerning PSD properties and relative light yields.
基金supported by Science&Technology Department of Sichuan Province(No.2023YFS0389)Chengdu Technology Innovation Research and Development Project of Chengdu Science and Technology Bureau(No.2022-YF05-00307-SN).
文摘Nanoplastics exhibit greater environmental biotoxicity than microplastics and can be ingested by humans through major routes such as tap water,bottled water and other drinking water.Nanoplastics present a challenge for air flotation due to their minute particle size,negative surface potential,and similar density to water.This study employed dodecyltrimethylammonium chloride(DTAC)as a modifier to improve conventional air flotation,which significantly enhanced the removal of polystyrene nanoplastics(PSNPs).Conventional air flotation removed only 3.09%of PSNPs,while air flotation modified by dodecyltrimethylammonium chloride(DTAC-modified air flotation)increased the removal of PSNPs to 98.05%.The analysis of the DTAC-modified air flotation mechanism was conducted using a combination of instruments,including a zeta potential analyzer,contact angle meter,laser particle size meter,high definition camera,scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and Fourier transform infrared spectrometer(FTIR).The results indicated that the incorporation of DTAC reversed the electrostatic repulsion between bubbles and PSNPs to electrostatic attraction,significantly enhancing the hydrophobic force in the system.This,in turn,improved the collision adhesion effect between bubbles and PSNPs.The experimental results indicated that even when the flotation time was reduced to 7min,the DTACmodified air flotation still achieved a high removal rate of 96.26%.Furthermore,changes in aeration,pH,and ionic strength did not significantly affect the performance of the modified air flotation for the removal of PSNPs.The removal rate of PSNPs in all three water bodies exceeded 95%.The DTAC-modified air flotation has excellent resistance to interference from complex conditions and shows great potential for practical application.
基金supported by the National Natural Science Foundation of China(22308006 and 22278001)the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0407).
文摘Polystyrene(PS)waste was depolymerized using a low-temperature pyrolysis treatment(LTPT)to increase its caking index.The mechanism of caking index modification was revealed by using Fourier transform infrared spectroscopy,thermogravimetric(TG)analysis,pyrolysis-gas chromatography with mass spectrometric detection,and solid-state^(13)C nuclear magnetic resonance spectroscopy.The crucible coal-blending coking tests were carried out using an industrial coal mixture and the treated-PS with the highest caking index(PS300)or raw PS.Some properties of the resultant cokes were also analyzed.It was demonstrated that the caking index of PS dramatically increased by LTPT;however,exceeding 300℃ did not yield any benefit.The caking index increased due to the formation of the caking components,whose molecules are medium in size,caused by LTPT.Additionally,the coke reactivity index of the coke obtained from the mixture containing PS300 decreased by 5.1%relative to that of the coke made from the mixture with PS and the coke strength after reaction index of the former increased by 7.3% compared with that of the latter,suggesting that the ratio of depolymerized PS used for coal-blending coking could increase relative to that of PS.
文摘Chloromethylation of polystyrene (PS) with two different chloromethylating systems methylal/thionyl chloride and paraformaldehyde/trimethylchlorosilane was studied. Soluble chloromethylated polystyrene with a degree of substitution of 89% was obtained. The Conant-Finkelstein reaction on the chloromethylated PS afforded soluble iodomethylated polystyrene with a degree of substitution as high as 96%. The reaction conditions of Minisci were employed to radically pyridinate PS via its iodomethylated derivative. Polyelectrolytes were formed which could be converted to normal polymers by treatment with a 20% aqueous solution of NaOH.
基金financially supported by Higher Education Commission(HEC)Pakistan under the NRPU R&D project-20-3052
文摘The dielectric and mechanical properties of hybrid polymer nanocomposites of polystyrene/polyaniline/carbon nanotubes coated with polyaniline (pCNTs) have been investigated using impedance analyzer and extensometer. The blends of PS/PANI formed the heterogeneous phase separated morphology in which pCNTs are dispersed uniformly. The incorporation of a small amount of pCNTs into the blend of PS/PANI has remarkably increased the dielectric properties. Similarly, the AC conductivity of PS/PANI is also increased five orders of magnitude from 1.6 × 10^-10 to 2.0×10^-5 S.cm-1 in the hybrid nanocomposites. Such behavior of hybrid nanocomposites is owing to the interfacial polarization occurring due to the presence of multicomponent domains with varying conductivity character of the phases from insulative PS to poor conductor PANI to highly conductive CNTs. Meanwhile, the tensile modulus and tensile strength are also enhanced significantly up to 55% and 160%, respectively, without much loss of ductility for three phase hybrid nanocomposites as compared to the neat PS. Thereby, the hybrid nanocomposites of PS/PANI/pCNTs become stiffer, stronger and tougher as compared to the neat systems.
基金Project(2012JQ7013)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(QN2012025)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011BSJJ084)supported by Research Foundation of Northwest A&F University,China
文摘Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.
基金supported by the National Natural Science Foundation of China (Nos. 51073146, 51103143, 51173175, 51473152, and 51573174)the Fundamental Research Funds for the Central Universities (Nos. WK2060200012 and WK3450000001)the Foundation of Anhui Key Laboratory of Tobacco Chemistry (China Tobacco Anhui Industrial Co., Ltd.) (No. 2014126)
文摘Macroporous polystyrene microsphere/graphene oxide(PS/GO) composite monolith was first prepared using Pickering emulsion droplets as the soft template. The Pickering emulsion was stabilized by PS/GO composite particles in-situ formed in an acidic water phase. With the evaporation of water and the oil phase(octane), the Pickering emulsion droplets agglomerated and combined with each other, forming a three-dimensional macroporous PS/GO composite matrix with excellent mechanical strength. The size of the macrospores ranged from 4 mm to 20 mm. The macroporous PS/GO composite monolith exhibited high adsorption capacity for tetracycline(TC) in an aqueous solution at p H 4–6. The maximum adsorption capacity reached 197.9 mg g 1at p H 6. The adsorption behaviour of TC fitted well with the Langmuir model and pseudo-second-order kinetic model. This work offers a simple and efficient approach to fabricate macroporous GO-based monolith with high strength and adsorption ability for organic pollutants.
基金financially supported by the National Natural Science Fundation of China (No.50873085)
文摘Luminescent polystyrene microspheres were easily fabricated from poly(styrene-co-methacrylic acid)and aqueous RE(III) chloride solution(RE=Eu, Tb) in the presence of 2,20-bipyridine as second ligand. The negative charges of carboxyl groups on the surface of microspheres coordinated with rare earth ions at first, such as complexes covalently linked to 2,20-bipyridine, resulting in strong photoluminescence. Various methods, including transmission electron microscope(TEM), scanning electron microscope(SEM), energy dispersive spectroscopy(EDS),Fourier transform infrared spectroscopy(FT-IR), and fluorescence spectrophotometer, were used to characterize the resultant polystyrene composite microspheres. This work highlights the idea that it is facile to synthesis luminescent microspheres by surface-modified method directly.
基金Funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20050487017)
文摘Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.