Serratia marcescens strain 9986 is a producer of prodigiosin used as a dye of polyolefines (polyethylene, ultratene). The biosynthesis of pigment was closely connected with controlled growth parameters. A prodigiosin ...Serratia marcescens strain 9986 is a producer of prodigiosin used as a dye of polyolefines (polyethylene, ultratene). The biosynthesis of pigment was closely connected with controlled growth parameters. A prodigiosin yield 0.2 - 0.4 mg per l of culture medium in the batch culture under aerobic conditions was obtained. Prodigiosin was extracted from crude biomass treated by 0.1% of sodium dodecyl sulfate (SDS). This novel elaborated stage is necessary for thermostability a dye in polymer. The consumption of prodigiosin preparation is more economical in the technology of the coloration of polyolefines. The elaborated method has been manufactured for dyeing polyethylene by biological pigment-articles of the common use corresponding to the technological standard.展开更多
Although Ziegler-Natta(Z-N)polyolefins have been widely used as raw materials to produce pharmaceutical or food packaging,the migration of acid scavengers,an additive usually introduced in Z-N polyolefins,from the pac...Although Ziegler-Natta(Z-N)polyolefins have been widely used as raw materials to produce pharmaceutical or food packaging,the migration of acid scavengers,an additive usually introduced in Z-N polyolefins,from the packaging to its contents has not been reported.In this work,the migration of the two most used acid scavengers,calcium stearate(CaSt_(2))and zinc stearate(ZnSt_(2)),from a Z-N polypropylene random copolymer(PPR)into water during autoclaving at 121℃ were comparatively investigated.It was found that,for PPR plates containing 0.1 wt%CaSt_(2)or ZnSt_(2)(PPR-0.1CaSt_(2),PPR-0.1ZnSt_(2),respectively),the concentration of migrated calcium ion into water increased with autoclaving time,while that of zinc ion was much lower at same treatment durations and did not show a significant increase with treatment time.Interestingly,after removing all plates and acidification treatment,a considerable amount of stearic acid was detected in sterilized water for PPR-0.1ZnSt_(2),but no such significant stearic acid was detected in sterilized water for PPR-0.1CaSt_(2).Based on the structural evolution of the two soaps upon heating,possible mechanisms for the different migration behavior of CaSt_(2)and ZnSt_(2)from PPR into water during autoclaving treatment were proposed.Our results suggest that the migration issue of acid scavengers is worthy of attention in pharmaceutical packaging materials produced from Z-N polyolefins.展开更多
Mechanochromic polyolefins represent a novel class of functionalized polyolefins,which still remains significant challenges.Pd(II)-catalyzed coordination-insertion copolymerization is a feasible method for achieving t...Mechanochromic polyolefins represent a novel class of functionalized polyolefins,which still remains significant challenges.Pd(II)-catalyzed coordination-insertion copolymerization is a feasible method for achieving this kind of polymers,yet with linear microstructures.Ringopening metathesis polymerization(ROMP)offers another promising avenue for affording functionalized polyolefins.This method exhibits high polar group tolerance and the ability to precisely regulate polymer branches.In this study,we report the method for producing mechanochromic branched polyethylenes via ROMP.By employing the terpolymerization of a well-designed monomer containing the mechanochromic group,NB-ABF,with cyclooctene(COE)and long-chain 5-hexylcyclooctene(COE-C6),following by hydrogenation process,we synthesized a range of functionalized branched polyethylenes characterized by varied branching density and polar monomer incorporation.These polymers bear a structural resemblance to functionalized ethylene-octene copolymers.After crosslinking,mechanochromophores are generated,and mechanochromism is achieved in uniaxial tensile testing.A comprehensive assessment reveals that both the incorporation of polar monomers and variations in branching density significantly influence their mechanical properties.Notably,upon stretching,these materials display pronounced visible color change,confirming the successful development of mechanochromic branched polyethylenes.展开更多
Cold plasma-assisted catalytic upcycling of polyolefin wastes integrated with CO_(2)into value-added chemicals is a promising solution for mitigating the global carbon emissions and fossil energy crisis,but still chal...Cold plasma-assisted catalytic upcycling of polyolefin wastes integrated with CO_(2)into value-added chemicals is a promising solution for mitigating the global carbon emissions and fossil energy crisis,but still challenging due to the complexity of products and low energy efficiency.Given this,a novel one-stage process of cold plasma coupled with Ga-modified hierarchical H-ZSM-5(Ga/Hie-ZSM-5)catalyst for polyolefins upgrading was designed with polyolefins followed by the catalysts within the plasma region,which facilitated the upcycling of polyolefins to light olefins and CO_(2)activation by plasma,and thereby the enhanced synergy between cold plasma and catalysts for aromatics production.At an input power of ca.45 W without external heating,the low-density polyethylene(LDPE)waste was completely converted with the assistance of CO_(2)and the yield of oil products over the Ga/Hie-ZSM-5 catalyst was highly up to 62.2 wt%,with nearly 100% selectivity of aromatics.Meanwhile,the degradation efficiency of LDPE and the energy efficiency could reach 2.5 g_(LDPE)·g_(cat)^(-1)·h^(-1)and 55.56 g_(LDPE)·g_(cat)^(-1)·kW^(-1)h^(-1),respectively.Mechanism investigation revealed that the plasma and CO_(2)synergistically affect the primary cracking of LDPE,forming a primary product enriched in olefins and a small amount of CO.Subsequently,the produced olefins intermediates were further aromatized via cyclizationdehydrogenation route on the Ga/Hie-ZSM-5 catalyst with assistance of CO_(2)under the synergistic effect of plasma-catalysis.This work offers a feasible strategy to improve the yield of aromatic products for the plasma-catalytic upcycling of polyolefins and CO_(2)at ambient pressure without any external heating.展开更多
The crystallization behavior of two commercial polyolefin elastomer(POE)samples was investigated using the fast scanning chip calorimetry(FSC)technique.Non-isothermal crystallization of the POE samples during cooling ...The crystallization behavior of two commercial polyolefin elastomer(POE)samples was investigated using the fast scanning chip calorimetry(FSC)technique.Non-isothermal crystallization of the POE samples during cooling to low temperatures cannot be inhibited under the largest efficient cooling rate employed in the current work.Thus,the isothermal crystallization of POE samples was limited to a narrow temperature range.When the POE samples were cooled to a certain temperature below the non-isothermal crystallization temperature for crystallization,a crystallization time dependent melting peak appeared in the low temperature region besides the high temperature melting peak originated from the non-isothermal crystallization.This low temperature melting peak was arisen from the melting of crystals isothermally crystallized at the selected crystallization temperature.At each crystallization temperature,the lengths of crystallizable segments were different,thus,the low melting peak increased with increasing the crystallization temperature.In terms of the high melting peak attributed to the non-isothermally crystallized crystals,it somehow decreased with increasing crystallization time and then became constant with further increasing crystallization time at the selected crystallization temperature.This could be explained by the fact that the crystallizable sequences with longer length would nucleate and crystallize first to form thicker crystals during cooling.The subsequent crystallization contributed by the shorter crystallizable sequences will result in the formation of thinner crystals,causing the melting peak to shift to the lower temperature.展开更多
Olefin polymerization is one of the most im portant chemical reactions in industry.This work presents a strategy that emphasizes the synergistic meta/poro-steric hindrance of N-aryl groups and electronic effects in ne...Olefin polymerization is one of the most im portant chemical reactions in industry.This work presents a strategy that emphasizes the synergistic meta/poro-steric hindrance of N-aryl groups and electronic effects in newly synthesized neutral salicylaldiminato nickel catalysts.These nickel(Ⅱ)catalysts exhibit exceptional thermostability,ranging from 30℃to 130℃,demonstrating enhanced catalytic activities and broadly regulated polyethylene molecular weights(3-341 kg·mol^(-1))and controlled polymer branch density(2-102 brs/1000C).The preferred catalyst Ni3 with concerted steric and electronic effects enables the production of solid-state semi-crystalline polyethylene materials at temperatures below 90℃.Notably,Ni3 exhibits an impressive tolerance of 110℃and can withstand even the challenging polymerization temperature of 130℃,leading to the production of polyethylene wax and oil.Also,functionalized polyethylene is produced.展开更多
Biaxial-oriented polypropylene (BOPP) thin films are currently used as dielectrics in state-of-the-art capacitors that show many advantages, such as low energy loss and high breakdown strength, but a limited energy de...Biaxial-oriented polypropylene (BOPP) thin films are currently used as dielectrics in state-of-the-art capacitors that show many advantages, such as low energy loss and high breakdown strength, but a limited energy density ( 600 MV/m. The PP-OH dielectric demonstrates a linear reversible charge storage behavior with high releasing energy density > 7 J/cm3 (2 - 3 times of BOPP) after an applied electric field at E = 600 MV/m, without showing any significant increase of energy loss and remnant polarization at zero electric field. On the other hand, a cross-linked polypropylene (x-PP) exhibits an ε ~ 3, which is independent of a wide range of temperatures and frequencies, slim polarization loops, high breakdown strength (E = 650 MV/m), narrow breakdown distribution, and reliable energy storage capacity > 5 J/cm3 (double that of state-of-the-art BOPP capacitors), without showing any increase in energy loss.展开更多
To address the issue of hemilabile catalyst in olefin polymerization catalysis, a cyclizing strategy was used to construct novel N-bridged phosphine-carbonyl palladium and nickel catalysts, resulting in improvements o...To address the issue of hemilabile catalyst in olefin polymerization catalysis, a cyclizing strategy was used to construct novel N-bridged phosphine-carbonyl palladium and nickel catalysts, resulting in improvements on ethylene(co)polymerizations. The N-bridged phosphinecarbonyl Pd catalysts(Pd1-Pd5) and Ni catalysts(Ni1-Ni5) bearing five-to eight-membered-ring structures were designed and synthesized.Catalytic performance for ethylene(co)polymerization became better as the size of N-containing bridge increased. The seven-membered-ring bridged catalysts Pd4 and Ni4 exhibited the best performance in terms of catalytic activity, polymer molecular weight and incorporation of acrylates and acrylic acid. The better performance of these catalysts bearing larger-size bridges was tentatively attributed to the methyleneinduced higher electron density around nitrogen, which strenghtens the coordination of carbonyl group to metal center, and also to the steric effect offered by this cyclization. This work provides a new strategy to enhance hemilabile polymerization catalysts.展开更多
As an important part of semicrystalline polymer materials,polyolefin elastomers are widely used,and the in-depth analysis of their molecular chain structure information is of great significance to promote their rapid ...As an important part of semicrystalline polymer materials,polyolefin elastomers are widely used,and the in-depth analysis of their molecular chain structure information is of great significance to promote their rapid development.We show in this work an effort in characterizing a commercial polyolefin elastomer of ethylene/1-octene copolymer by a modified successive self-nucleation and annealing(SSA)technique.A small amount of linear polyethylene was blended with the ethylene/1-octene copolymer serving as nucleation agent during SSA.It turned out that a tiny fraction of linear polyethylene can significantly promote the crystallization of the copolymer during cooling from different annealing temperatures and increase the melting temperature of the fractions so that providing apparent methylene sequence length much closer to the real value than obtained by traditional SSA technique.展开更多
In this work,the formation of cocontinuous structure in immiscible high density polyethylene/isotactic polypropylene(HDPE/iPP)blends was investigated for various olefin-based compatibilizers of distinct molecular arch...In this work,the formation of cocontinuous structure in immiscible high density polyethylene/isotactic polypropylene(HDPE/iPP)blends was investigated for various olefin-based compatibilizers of distinct molecular architectures,including ternary random copolymer EPDM,olefin block copolymer(OBC),polypropylene-based OBC(PP-OBC),ethylene/a-olefin copolymer(POE),bottlebrush polymer poly(1-dodecene),and comb-like poly(propylene-co-high a-olefin)(PPO).The scanning electron microscopy results show that after adding OBC,PP-OBC,and POE copolymers,the finer droplet-in-matrix morphologies were obtained in 70/30 HDPE/iPP blend.Interestingly,for 70/30 HDPE/iPP blend with just 5 wt%of PPO copolymers,the phase inversion from droplet-in-matrix to cocontinuous morphology can be observed.It was proposed that the development of cocontinuous morphology contained the following steps:(1)in terfacial saturati on of compatibilizers and droplet deformation,(2)droplet-droplet coalesce nee,(3)continuity development,and(4)the formation of dual-phase con tinuity.Among the diverse copolymers studied in this work,PPO copolymer can be easily removed out of the interface during droplet coalescence and stabilize the curvature of minor fiber phase,facilitating the formation of cocontinuous morphology.In contrast,other olefin-based compatibilizers(EPDM,OBC,PP-OBC,and POE)exhibit the distinct steric repulsion effect to prohibit droplet coalescence.Moreover,the cocontinous interval varies with the compatibilizer architectures.Surprisingly,after adding 10 wt%of PPO copolymers,the cocontinuous interval was greatly broadened from HDPE/iPP range of 45/55-60/40 to that of 40/60-70/30.展开更多
As a long-term project aimed at developing super polyolefin blends, in this paper we summarize our work on themechanical reinforcement and phase morphology of polyolefin blends achieved by dynamic packing injection mo...As a long-term project aimed at developing super polyolefin blends, in this paper we summarize our work on themechanical reinforcement and phase morphology of polyolefin blends achieved by dynamic packing injection molding(DPIM). The main feature of this technology is that the specimen is forced to move repeatedly in the model by two pistonsthat move reversibly with the same frequency during cooling, which results in preferential orientation of the dispersed phaseas well as the matrix. The typical morphology of samples obtained via DPIM is a shear-induced morphology with a core inthe center, an oriented zone surrounding the core and a skin layer in the cross-section areas. Shear-induced phase dissolutionat a higher shear rate but phase separation at low shear rates is evident from AFM examination of LLDPE/PP (50/50) blends.The super polyolefin blends having high modulus (1.9-2.2 GPa), high tensile strength (100-120 MPa) and high impactstrength (6 times as that of pure HDPE) have been prepared by controlling the phase separation, molecular orientation andcrystal morphology.展开更多
The morphology and properties of HDPE blends with Zn-SEPDM and GR were studied through SEM and mechanical property test. The results show that as Zn-SEPDM/GR content amounts to 20%, the blend becomes an IPN in structu...The morphology and properties of HDPE blends with Zn-SEPDM and GR were studied through SEM and mechanical property test. The results show that as Zn-SEPDM/GR content amounts to 20%, the blend becomes an IPN in structure, and that a rather high impact and tensile strength of HDPE may be obtained after blending. The antistatic effect, the softening point,and HDT of the blend are higher as compared to HDPE/Zn-SEPDM/ZnSt (zinc stearate).The effect of Zn-SEPDM on the compatibility the morphology and properties of IPP blends were studied by DSC, TEM and mechanical properties test. The results show that as Zn-SEPDM content exceeds 20%. Zn-SEPDM in the blend becomes continuous and an abrupt change in impact strength is incurred there from. Owing to the incorporation of ionic groups into EPDM.the strong interactions betWeen the chains make both the impact and the tensile strength of IPP remarkably higher展开更多
Mono salicylaldiminato vanadium(Ⅲ) complexes (1a-1f) [RN = CH(ArO)]VC12(THF)2 (Ar = C6H4 (1a-1e), R = Ph, 1a; R = p-CFaPh, 1b; R = 2,6-Me2Ph, 1c; R = 2,6-iPrEPh, 1d; R = eyclohexyl, 1e; Ar = C6HEtBU2(2,4...Mono salicylaldiminato vanadium(Ⅲ) complexes (1a-1f) [RN = CH(ArO)]VC12(THF)2 (Ar = C6H4 (1a-1e), R = Ph, 1a; R = p-CFaPh, 1b; R = 2,6-Me2Ph, 1c; R = 2,6-iPrEPh, 1d; R = eyclohexyl, 1e; Ar = C6HEtBU2(2,4), R = 2,6-iPrEPh, 1f) and bis(salicylaldiminato) vanadium(III) complexes (2a-2f) [RN : CH(ArO)]EVCI(THF)x (Ar = C6H4 (2a-2e), x = 1 (2a-2e), R = Ph, 2a; R = p-CF3Ph, 2b; R = 2,6-Me2Ph, 2c; R = 2,6-iPr2Ph, 2d; R = cyclohexyl, 2e; Ar = C6HEtBU2(2,4), R = 2,6-iPrEPh, x = 0, 2f) have been evaluated as the active catalysts for ethylene/1-hexene copolymerization in the presence of Et2A1C1. The ligand substitution pattern and the catalyst structure model significantly influenced the polymerization behaviors such as the catalytic activity, the molecular weight and molecular weight distribution of the copolymers etc. The highest catalytic activity of 8.82 kg PE/(mmolv.h) was observed for vanadium catalyst 2d with two 2,6-diisopropylphenyl substituted salicylaldiminato ligands. The copolymer with the highest molecular weight was obtained by using mono salieylaldiminato vanadium catalyst 1 f having ligands with tert-butyl at the ortho and para of the aryloxy moiety.展开更多
Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration ...Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration and worsen Li plating-stripping behaviors when smoothly shifting from lithium-ion batteries(LIBs) to LMBs.This study precisely regulations the crystal structure of β-polypropylene and separator porous construction to investigate the intrinsic porous structure and mechanical properties determined electrochemical performances and cycling durability of LMBs.Crystal structure characterizations,porous structure analyses,and electrochemical cycling tests uncover appropriate annealing thermal stimulation concentrates β-lamellae thickness and enhances lamellae thermal stability by rearranging molecular chain in inferior β-lamellae,maximally homogenizing biaxial tensile deformation and resultant porous constructions.These even pores with high connectivity lower ion migration barriers,alleviate heterogeneous Li^(+) flux dispersion,stabilize reversible Li plating-stripping behaviors,and hinder coursing and branching of Li dendrites,endowing steady cell cycling durability,especially at higher currents due to the highlighted uncontrollable cumulation of dead Li,which offers new insights for the current pursuit of high-power density battery and fast charging technology.The suggested separator structure-chemical nature functions in ensuring cyclic cell stability and builds reliable relationships between separator structure design and practical LMBs applications.展开更多
Development of practical lithium(Li)metal batteries(LMBs)remains challenging despite promises of Li metal anodes(LMAs),owing to Li dendrite formation and highly reactive surface nature.Polyolefin separators used in LM...Development of practical lithium(Li)metal batteries(LMBs)remains challenging despite promises of Li metal anodes(LMAs),owing to Li dendrite formation and highly reactive surface nature.Polyolefin separators used in LMBs may undergo severe mechanical and chemical deterioration when contacting with LMAs.To identify the best polyolefin separator for LMBs,this study investigated the separator-deterministic cycling stability of LMBs under practical conditions,and redefined the key influencing factors,including pore structure,mechanical stability,and chemical affinity,using 12 different commercial separators,including polyethylene(PE),polypropylene(PP),and coated separators.At extreme compression triggered by LMA swelling,isotropic stress release by balancing the machine direction and transverse direction tensile strengths was found to be crucial for mitigating cell short-circuiting.Instead of PP separators,a PE separator that possesses a high elastic modulus and a highly connected pore structure can uniformly regulate LMA swelling.The ceramic coating reinforced short-circuiting resistance,while the cycling efficiency degraded rapidly owing to the detrimental interactions between ceramics and LMAs.This study identified the design principle of separators for practical LMBs with respect to mechanical stability and chemical affinity toward LMAs by elucidating the impacts of separator modification on the cycling performance.展开更多
The copolymerizations of ethylene with 10-undecen-1-ol have been investigated using vanadium precatalysts, bis(imino)pyrrolyl vanadium(Ⅲ) complexes 1-3, 2,5-C4H2N(CH=NR)2VCl2(THF)2 [R = C6H5 (1), 2,6-iPr2C6...The copolymerizations of ethylene with 10-undecen-1-ol have been investigated using vanadium precatalysts, bis(imino)pyrrolyl vanadium(Ⅲ) complexes 1-3, 2,5-C4H2N(CH=NR)2VCl2(THF)2 [R = C6H5 (1), 2,6-iPr2C6H3 (2), C6F5 (3)], and the iminopyrrolyl and b-diketiminate ones for comparison. The polar monomer was pretreated by diethylaluminium chloride (present also as the cocatalyst) before the copolymerization. The monomer reactivity ratios were evaluated using the Fineman-Ross method. The ligand structure considerably influenced the catalytic activity and tolerance towards the polar monomer, the polar monomer incorporation and the molecular weights of the resultant copolymers. The bis(imino)pyrrolyl vanadium complexes exhibited promising catalytic performance for the copolymerization, and a high catalytic activity up to 3.84 kg/mmolv·h with a high comonomer incorporation of 14.0 mol% was achieved by complex 3 under mild conditions.展开更多
The diffusion coefficient of volatiles in polymer solutions is a crucial parameter to describe the mass transfer efficiency and ability of volatiles.In this research,polyolefin elastomer(POE)was used as a polymer,and ...The diffusion coefficient of volatiles in polymer solutions is a crucial parameter to describe the mass transfer efficiency and ability of volatiles.In this research,polyolefin elastomer(POE)was used as a polymer,and cyclohexane was used as a volatile.A gravimetric analysis was applied to measure the diffusion coefficient of cyclohexane in POE.The devolatilization rate of the POE-cyclohexane system under different conditions was measured.The effects of temperature,film sample thickness,and initial concentration of volatiles on the devolatilization rate were discussed.Based on the devolatilization rate data,the average diffusion coefficient of cyclohexane in POE was obtained by fitting with a mathematical model.The experimental results indicate that the devolatilization rate increased with increasing temperature and initial concentration of volatiles,but it decreased with increasing sample thickness.As the thickness increased,the overall diffusion resistance increased.As the temperature increased,the molecular movement increased,resulting in the increase of average diffusion coefficient.The relationship between the diffusion coefficient of the POE-cyclohexane system and temperature follows the Arrhenius law.The diffusion activation energy E=6201.73 J/mol,and the pre-exponential factor of the diffusion coefficient D0=2.64×10^(-10) m^(2)/s.This work can provide basic data for exploring the devolatilization of POE polymers and serves as a useful reference for enhancing the effect of devolatilization.展开更多
The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C b...The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C bonds in mixed polyolefin plastics over non-noble metal catalysts under mild conditions. The nickelbased catalyst involving Ni_(2)Al_(3) phase enables the direct transformation of mixed polyolefin plastics into natural gas, and the gas carbon yield reaches up to 89.6%. Reaction pathway investigation reveals that natural gas comes from the stepwise catalytic cleavage of C–C bonds in polypropylene, and the catalyst prefers catalytic cleavage of terminal C–C bond in the side-chain with the low energy barrier.Additionally, our developed approach is evaluated by the technical economic analysis for an economically competitive production process.展开更多
A neutral nickel(Ⅱ)catalyst D,{[O-(3-cyclohexyl)(5-Cl)C_6H_2-ortho-C(H)=N-2,6-C_6H_3(i-Pr)_2]Ni(Ph_3P)(Ph)}hasbeen synthesized and characterized by IH-NMR,FTIR and elemental analysis.The results indicate that Al(i-Bu...A neutral nickel(Ⅱ)catalyst D,{[O-(3-cyclohexyl)(5-Cl)C_6H_2-ortho-C(H)=N-2,6-C_6H_3(i-Pr)_2]Ni(Ph_3P)(Ph)}hasbeen synthesized and characterized by IH-NMR,FTIR and elemental analysis.The results indicate that Al(i-Bu)_3 is aneffective cocatalyst for the neutral nickel catalyst.With bis(1,5-cyclooctadiene)nickel(0)[Ni(COD)_2]or Al(i-Bu)_3 as a co-catalyst,the neutral nickel catalyst D is active for ethylene polymerisation and copolymerisation with polar monomers(tert-butyl 10-undecenoate(BU),methyl 10-undecenoate(MU),allyl alcohol(AA)and 4-penten-1-ol(PO))under mild conditions.The resulting polymers were characterized by (?)H-NMR,FTIR,DSC,and GPC.From the comparative studies,Ni(COD)_2 ismore active than Al(i-Bu)_3 for ethylene homopolymerization,while Al(i-Bu)_3 is more effective than Ni(COD)_2 for ethylenecopolymerisation with polar monomers.The polymerization parameters which affect both the catalytic activity and propertiesof the resulting polyethylene were investigated in detail.Under the conditions of 20 μmol catalyst D and Ni(COD)_2/D=3(molar ratio) in 30 mL toluene solution at 45℃,12×105 Pa ethylene for 20 min,the polymerization activity reaches ashigh as 7.29×105 gPE.(mol.Ni.h)^(-1) and M_η,is 7.16×104 g.mol^(-1).For ethylene copolymerization with polar monomers,theeffect of comonomer concentrations was examined.As high as 0.97 mol% of MU,1.06 mol% of BU,1.04 mol% of AA and1.37 mol% of PO were incorporated into the polymer,respectively,catalyzed by D/Al(i-Bu)_3 system.展开更多
Polyolefins that bear a chiral side chain(typically an isobutyl group)experience a so-called macromolecularamplification of chirality:the chiral side-chain induces a slight preference for either tg or tg(?) main chain...Polyolefins that bear a chiral side chain(typically an isobutyl group)experience a so-called macromolecularamplification of chirality:the chiral side-chain induces a slight preference for either tg or tg(?) main chain conformation.Thisslight conformational bias is amplified cooperatively along the chain,and results in preferred chirality of the main chainhelical conformations.As a result,these polymers display a liquid-crystal(LC)phase both in solution and,in the melt as atransient phase on the way to crystallization.The existence of two processes(melt-LC and LC-crystal transitions)results inunconventional behaviors that were first analyzed by Pino and collaborators back in 1975.These polymers also offer a meansto test the structural consequences of recently introduced crystallization schemes.These schemes postulate the formation of atransient liquid-crystal phase as a general scheme for polymer crystallization.展开更多
文摘Serratia marcescens strain 9986 is a producer of prodigiosin used as a dye of polyolefines (polyethylene, ultratene). The biosynthesis of pigment was closely connected with controlled growth parameters. A prodigiosin yield 0.2 - 0.4 mg per l of culture medium in the batch culture under aerobic conditions was obtained. Prodigiosin was extracted from crude biomass treated by 0.1% of sodium dodecyl sulfate (SDS). This novel elaborated stage is necessary for thermostability a dye in polymer. The consumption of prodigiosin preparation is more economical in the technology of the coloration of polyolefines. The elaborated method has been manufactured for dyeing polyethylene by biological pigment-articles of the common use corresponding to the technological standard.
基金supported by the National Natural Science Foundation of China(No.52173056)the Science and Technology Program of Gansu Province,China(No.23ZDGA001).
文摘Although Ziegler-Natta(Z-N)polyolefins have been widely used as raw materials to produce pharmaceutical or food packaging,the migration of acid scavengers,an additive usually introduced in Z-N polyolefins,from the packaging to its contents has not been reported.In this work,the migration of the two most used acid scavengers,calcium stearate(CaSt_(2))and zinc stearate(ZnSt_(2)),from a Z-N polypropylene random copolymer(PPR)into water during autoclaving at 121℃ were comparatively investigated.It was found that,for PPR plates containing 0.1 wt%CaSt_(2)or ZnSt_(2)(PPR-0.1CaSt_(2),PPR-0.1ZnSt_(2),respectively),the concentration of migrated calcium ion into water increased with autoclaving time,while that of zinc ion was much lower at same treatment durations and did not show a significant increase with treatment time.Interestingly,after removing all plates and acidification treatment,a considerable amount of stearic acid was detected in sterilized water for PPR-0.1ZnSt_(2),but no such significant stearic acid was detected in sterilized water for PPR-0.1CaSt_(2).Based on the structural evolution of the two soaps upon heating,possible mechanisms for the different migration behavior of CaSt_(2)and ZnSt_(2)from PPR into water during autoclaving treatment were proposed.Our results suggest that the migration issue of acid scavengers is worthy of attention in pharmaceutical packaging materials produced from Z-N polyolefins.
基金supported by the National Natural Science Foundation of China(No.U23B6011)the Jilin Provincial Science and Technology Department Program(No.20230101347JC)。
文摘Mechanochromic polyolefins represent a novel class of functionalized polyolefins,which still remains significant challenges.Pd(II)-catalyzed coordination-insertion copolymerization is a feasible method for achieving this kind of polymers,yet with linear microstructures.Ringopening metathesis polymerization(ROMP)offers another promising avenue for affording functionalized polyolefins.This method exhibits high polar group tolerance and the ability to precisely regulate polymer branches.In this study,we report the method for producing mechanochromic branched polyethylenes via ROMP.By employing the terpolymerization of a well-designed monomer containing the mechanochromic group,NB-ABF,with cyclooctene(COE)and long-chain 5-hexylcyclooctene(COE-C6),following by hydrogenation process,we synthesized a range of functionalized branched polyethylenes characterized by varied branching density and polar monomer incorporation.These polymers bear a structural resemblance to functionalized ethylene-octene copolymers.After crosslinking,mechanochromophores are generated,and mechanochromism is achieved in uniaxial tensile testing.A comprehensive assessment reveals that both the incorporation of polar monomers and variations in branching density significantly influence their mechanical properties.Notably,upon stretching,these materials display pronounced visible color change,confirming the successful development of mechanochromic branched polyethylenes.
基金financially supported by the National Key R&D Program of China(2023YFA1506602 and 2021YFA1501102)the National Natural Science Foundation of China(21932002,22276023,22402019)+1 种基金the Fundamental Research Funds for the Central Universities(DUT22LAB602)Liaoning Binhai Laboratory Project(LBLF-202306)。
文摘Cold plasma-assisted catalytic upcycling of polyolefin wastes integrated with CO_(2)into value-added chemicals is a promising solution for mitigating the global carbon emissions and fossil energy crisis,but still challenging due to the complexity of products and low energy efficiency.Given this,a novel one-stage process of cold plasma coupled with Ga-modified hierarchical H-ZSM-5(Ga/Hie-ZSM-5)catalyst for polyolefins upgrading was designed with polyolefins followed by the catalysts within the plasma region,which facilitated the upcycling of polyolefins to light olefins and CO_(2)activation by plasma,and thereby the enhanced synergy between cold plasma and catalysts for aromatics production.At an input power of ca.45 W without external heating,the low-density polyethylene(LDPE)waste was completely converted with the assistance of CO_(2)and the yield of oil products over the Ga/Hie-ZSM-5 catalyst was highly up to 62.2 wt%,with nearly 100% selectivity of aromatics.Meanwhile,the degradation efficiency of LDPE and the energy efficiency could reach 2.5 g_(LDPE)·g_(cat)^(-1)·h^(-1)and 55.56 g_(LDPE)·g_(cat)^(-1)·kW^(-1)h^(-1),respectively.Mechanism investigation revealed that the plasma and CO_(2)synergistically affect the primary cracking of LDPE,forming a primary product enriched in olefins and a small amount of CO.Subsequently,the produced olefins intermediates were further aromatized via cyclizationdehydrogenation route on the Ga/Hie-ZSM-5 catalyst with assistance of CO_(2)under the synergistic effect of plasma-catalysis.This work offers a feasible strategy to improve the yield of aromatic products for the plasma-catalytic upcycling of polyolefins and CO_(2)at ambient pressure without any external heating.
基金financially supported by the National Natural Science Foundation of China(No.52422301)Natural Science Foundation of Jilin Province(No.SKL202302033)。
文摘The crystallization behavior of two commercial polyolefin elastomer(POE)samples was investigated using the fast scanning chip calorimetry(FSC)technique.Non-isothermal crystallization of the POE samples during cooling to low temperatures cannot be inhibited under the largest efficient cooling rate employed in the current work.Thus,the isothermal crystallization of POE samples was limited to a narrow temperature range.When the POE samples were cooled to a certain temperature below the non-isothermal crystallization temperature for crystallization,a crystallization time dependent melting peak appeared in the low temperature region besides the high temperature melting peak originated from the non-isothermal crystallization.This low temperature melting peak was arisen from the melting of crystals isothermally crystallized at the selected crystallization temperature.At each crystallization temperature,the lengths of crystallizable segments were different,thus,the low melting peak increased with increasing the crystallization temperature.In terms of the high melting peak attributed to the non-isothermally crystallized crystals,it somehow decreased with increasing crystallization time and then became constant with further increasing crystallization time at the selected crystallization temperature.This could be explained by the fact that the crystallizable sequences with longer length would nucleate and crystallize first to form thicker crystals during cooling.The subsequent crystallization contributed by the shorter crystallizable sequences will result in the formation of thinner crystals,causing the melting peak to shift to the lower temperature.
基金financially supported by the National Natural Science Foundation of China(Nos.22122110 and U23B6011 for Z.J.)the Jilin Provincial Science and Technology Department Program(No.20210101070JC for Y.C.)。
文摘Olefin polymerization is one of the most im portant chemical reactions in industry.This work presents a strategy that emphasizes the synergistic meta/poro-steric hindrance of N-aryl groups and electronic effects in newly synthesized neutral salicylaldiminato nickel catalysts.These nickel(Ⅱ)catalysts exhibit exceptional thermostability,ranging from 30℃to 130℃,demonstrating enhanced catalytic activities and broadly regulated polyethylene molecular weights(3-341 kg·mol^(-1))and controlled polymer branch density(2-102 brs/1000C).The preferred catalyst Ni3 with concerted steric and electronic effects enables the production of solid-state semi-crystalline polyethylene materials at temperatures below 90℃.Notably,Ni3 exhibits an impressive tolerance of 110℃and can withstand even the challenging polymerization temperature of 130℃,leading to the production of polyethylene wax and oil.Also,functionalized polyethylene is produced.
文摘Biaxial-oriented polypropylene (BOPP) thin films are currently used as dielectrics in state-of-the-art capacitors that show many advantages, such as low energy loss and high breakdown strength, but a limited energy density ( 600 MV/m. The PP-OH dielectric demonstrates a linear reversible charge storage behavior with high releasing energy density > 7 J/cm3 (2 - 3 times of BOPP) after an applied electric field at E = 600 MV/m, without showing any significant increase of energy loss and remnant polarization at zero electric field. On the other hand, a cross-linked polypropylene (x-PP) exhibits an ε ~ 3, which is independent of a wide range of temperatures and frequencies, slim polarization loops, high breakdown strength (E = 650 MV/m), narrow breakdown distribution, and reliable energy storage capacity > 5 J/cm3 (double that of state-of-the-art BOPP capacitors), without showing any increase in energy loss.
基金financial support from the National Natural Science Foundation of China (Nos. 22122110 ad 21871250)the Jilin Provincial Science and Technology Department Program (No. 20200801009GH)Shaanxi Provincial Natural Science Basic Research Program-Shaanxi Coal and Chemical Industry Group Co., Ltd. Joint Fund (No. 2019JLZ-02)。
文摘To address the issue of hemilabile catalyst in olefin polymerization catalysis, a cyclizing strategy was used to construct novel N-bridged phosphine-carbonyl palladium and nickel catalysts, resulting in improvements on ethylene(co)polymerizations. The N-bridged phosphinecarbonyl Pd catalysts(Pd1-Pd5) and Ni catalysts(Ni1-Ni5) bearing five-to eight-membered-ring structures were designed and synthesized.Catalytic performance for ethylene(co)polymerization became better as the size of N-containing bridge increased. The seven-membered-ring bridged catalysts Pd4 and Ni4 exhibited the best performance in terms of catalytic activity, polymer molecular weight and incorporation of acrylates and acrylic acid. The better performance of these catalysts bearing larger-size bridges was tentatively attributed to the methyleneinduced higher electron density around nitrogen, which strenghtens the coordination of carbonyl group to metal center, and also to the steric effect offered by this cyclization. This work provides a new strategy to enhance hemilabile polymerization catalysts.
基金financially supported by the National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund(No.U19B6001)。
文摘As an important part of semicrystalline polymer materials,polyolefin elastomers are widely used,and the in-depth analysis of their molecular chain structure information is of great significance to promote their rapid development.We show in this work an effort in characterizing a commercial polyolefin elastomer of ethylene/1-octene copolymer by a modified successive self-nucleation and annealing(SSA)technique.A small amount of linear polyethylene was blended with the ethylene/1-octene copolymer serving as nucleation agent during SSA.It turned out that a tiny fraction of linear polyethylene can significantly promote the crystallization of the copolymer during cooling from different annealing temperatures and increase the melting temperature of the fractions so that providing apparent methylene sequence length much closer to the real value than obtained by traditional SSA technique.
基金the National Natural Science Foundation of China(No.21574097).
文摘In this work,the formation of cocontinuous structure in immiscible high density polyethylene/isotactic polypropylene(HDPE/iPP)blends was investigated for various olefin-based compatibilizers of distinct molecular architectures,including ternary random copolymer EPDM,olefin block copolymer(OBC),polypropylene-based OBC(PP-OBC),ethylene/a-olefin copolymer(POE),bottlebrush polymer poly(1-dodecene),and comb-like poly(propylene-co-high a-olefin)(PPO).The scanning electron microscopy results show that after adding OBC,PP-OBC,and POE copolymers,the finer droplet-in-matrix morphologies were obtained in 70/30 HDPE/iPP blend.Interestingly,for 70/30 HDPE/iPP blend with just 5 wt%of PPO copolymers,the phase inversion from droplet-in-matrix to cocontinuous morphology can be observed.It was proposed that the development of cocontinuous morphology contained the following steps:(1)in terfacial saturati on of compatibilizers and droplet deformation,(2)droplet-droplet coalesce nee,(3)continuity development,and(4)the formation of dual-phase con tinuity.Among the diverse copolymers studied in this work,PPO copolymer can be easily removed out of the interface during droplet coalescence and stabilize the curvature of minor fiber phase,facilitating the formation of cocontinuous morphology.In contrast,other olefin-based compatibilizers(EPDM,OBC,PP-OBC,and POE)exhibit the distinct steric repulsion effect to prohibit droplet coalescence.Moreover,the cocontinous interval varies with the compatibilizer architectures.Surprisingly,after adding 10 wt%of PPO copolymers,the cocontinuous interval was greatly broadened from HDPE/iPP range of 45/55-60/40 to that of 40/60-70/30.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29992535) and the China National Distinguished Young Investigator Fund.
文摘As a long-term project aimed at developing super polyolefin blends, in this paper we summarize our work on themechanical reinforcement and phase morphology of polyolefin blends achieved by dynamic packing injection molding(DPIM). The main feature of this technology is that the specimen is forced to move repeatedly in the model by two pistonsthat move reversibly with the same frequency during cooling, which results in preferential orientation of the dispersed phaseas well as the matrix. The typical morphology of samples obtained via DPIM is a shear-induced morphology with a core inthe center, an oriented zone surrounding the core and a skin layer in the cross-section areas. Shear-induced phase dissolutionat a higher shear rate but phase separation at low shear rates is evident from AFM examination of LLDPE/PP (50/50) blends.The super polyolefin blends having high modulus (1.9-2.2 GPa), high tensile strength (100-120 MPa) and high impactstrength (6 times as that of pure HDPE) have been prepared by controlling the phase separation, molecular orientation andcrystal morphology.
文摘The morphology and properties of HDPE blends with Zn-SEPDM and GR were studied through SEM and mechanical property test. The results show that as Zn-SEPDM/GR content amounts to 20%, the blend becomes an IPN in structure, and that a rather high impact and tensile strength of HDPE may be obtained after blending. The antistatic effect, the softening point,and HDT of the blend are higher as compared to HDPE/Zn-SEPDM/ZnSt (zinc stearate).The effect of Zn-SEPDM on the compatibility the morphology and properties of IPP blends were studied by DSC, TEM and mechanical properties test. The results show that as Zn-SEPDM content exceeds 20%. Zn-SEPDM in the blend becomes continuous and an abrupt change in impact strength is incurred there from. Owing to the incorporation of ionic groups into EPDM.the strong interactions betWeen the chains make both the impact and the tensile strength of IPP remarkably higher
基金financially supported by the National Natural Science Foundation of China(No.20734002)
文摘Mono salicylaldiminato vanadium(Ⅲ) complexes (1a-1f) [RN = CH(ArO)]VC12(THF)2 (Ar = C6H4 (1a-1e), R = Ph, 1a; R = p-CFaPh, 1b; R = 2,6-Me2Ph, 1c; R = 2,6-iPrEPh, 1d; R = eyclohexyl, 1e; Ar = C6HEtBU2(2,4), R = 2,6-iPrEPh, 1f) and bis(salicylaldiminato) vanadium(III) complexes (2a-2f) [RN : CH(ArO)]EVCI(THF)x (Ar = C6H4 (2a-2e), x = 1 (2a-2e), R = Ph, 2a; R = p-CF3Ph, 2b; R = 2,6-Me2Ph, 2c; R = 2,6-iPr2Ph, 2d; R = cyclohexyl, 2e; Ar = C6HEtBU2(2,4), R = 2,6-iPrEPh, x = 0, 2f) have been evaluated as the active catalysts for ethylene/1-hexene copolymerization in the presence of Et2A1C1. The ligand substitution pattern and the catalyst structure model significantly influenced the polymerization behaviors such as the catalytic activity, the molecular weight and molecular weight distribution of the copolymers etc. The highest catalytic activity of 8.82 kg PE/(mmolv.h) was observed for vanadium catalyst 2d with two 2,6-diisopropylphenyl substituted salicylaldiminato ligands. The copolymer with the highest molecular weight was obtained by using mono salieylaldiminato vanadium catalyst 1 f having ligands with tert-butyl at the ortho and para of the aryloxy moiety.
基金the Natural Science Foundation of Shandong Province (ZR2022QB050)the Liaocheng University Doctoral Initial Fund (318052137) for Financial Support。
文摘Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration and worsen Li plating-stripping behaviors when smoothly shifting from lithium-ion batteries(LIBs) to LMBs.This study precisely regulations the crystal structure of β-polypropylene and separator porous construction to investigate the intrinsic porous structure and mechanical properties determined electrochemical performances and cycling durability of LMBs.Crystal structure characterizations,porous structure analyses,and electrochemical cycling tests uncover appropriate annealing thermal stimulation concentrates β-lamellae thickness and enhances lamellae thermal stability by rearranging molecular chain in inferior β-lamellae,maximally homogenizing biaxial tensile deformation and resultant porous constructions.These even pores with high connectivity lower ion migration barriers,alleviate heterogeneous Li^(+) flux dispersion,stabilize reversible Li plating-stripping behaviors,and hinder coursing and branching of Li dendrites,endowing steady cell cycling durability,especially at higher currents due to the highlighted uncontrollable cumulation of dead Li,which offers new insights for the current pursuit of high-power density battery and fast charging technology.The suggested separator structure-chemical nature functions in ensuring cyclic cell stability and builds reliable relationships between separator structure design and practical LMBs applications.
基金supported by the National Research Foundation of Korea(NRF),Government of Korea(MSIT)(2020R1A4A4079810 and 2020R1C1C1009159).
文摘Development of practical lithium(Li)metal batteries(LMBs)remains challenging despite promises of Li metal anodes(LMAs),owing to Li dendrite formation and highly reactive surface nature.Polyolefin separators used in LMBs may undergo severe mechanical and chemical deterioration when contacting with LMAs.To identify the best polyolefin separator for LMBs,this study investigated the separator-deterministic cycling stability of LMBs under practical conditions,and redefined the key influencing factors,including pore structure,mechanical stability,and chemical affinity,using 12 different commercial separators,including polyethylene(PE),polypropylene(PP),and coated separators.At extreme compression triggered by LMA swelling,isotropic stress release by balancing the machine direction and transverse direction tensile strengths was found to be crucial for mitigating cell short-circuiting.Instead of PP separators,a PE separator that possesses a high elastic modulus and a highly connected pore structure can uniformly regulate LMA swelling.The ceramic coating reinforced short-circuiting resistance,while the cycling efficiency degraded rapidly owing to the detrimental interactions between ceramics and LMAs.This study identified the design principle of separators for practical LMBs with respect to mechanical stability and chemical affinity toward LMAs by elucidating the impacts of separator modification on the cycling performance.
基金financially supported the National Natural Science Foundation of China(No.51073158)
文摘The copolymerizations of ethylene with 10-undecen-1-ol have been investigated using vanadium precatalysts, bis(imino)pyrrolyl vanadium(Ⅲ) complexes 1-3, 2,5-C4H2N(CH=NR)2VCl2(THF)2 [R = C6H5 (1), 2,6-iPr2C6H3 (2), C6F5 (3)], and the iminopyrrolyl and b-diketiminate ones for comparison. The polar monomer was pretreated by diethylaluminium chloride (present also as the cocatalyst) before the copolymerization. The monomer reactivity ratios were evaluated using the Fineman-Ross method. The ligand structure considerably influenced the catalytic activity and tolerance towards the polar monomer, the polar monomer incorporation and the molecular weights of the resultant copolymers. The bis(imino)pyrrolyl vanadium complexes exhibited promising catalytic performance for the copolymerization, and a high catalytic activity up to 3.84 kg/mmolv·h with a high comonomer incorporation of 14.0 mol% was achieved by complex 3 under mild conditions.
基金The authors wish to express their thanks for the financial support from the Polyolefin Elastomer Technology Development project(2020B-2619).
文摘The diffusion coefficient of volatiles in polymer solutions is a crucial parameter to describe the mass transfer efficiency and ability of volatiles.In this research,polyolefin elastomer(POE)was used as a polymer,and cyclohexane was used as a volatile.A gravimetric analysis was applied to measure the diffusion coefficient of cyclohexane in POE.The devolatilization rate of the POE-cyclohexane system under different conditions was measured.The effects of temperature,film sample thickness,and initial concentration of volatiles on the devolatilization rate were discussed.Based on the devolatilization rate data,the average diffusion coefficient of cyclohexane in POE was obtained by fitting with a mathematical model.The experimental results indicate that the devolatilization rate increased with increasing temperature and initial concentration of volatiles,but it decreased with increasing sample thickness.As the thickness increased,the overall diffusion resistance increased.As the temperature increased,the molecular movement increased,resulting in the increase of average diffusion coefficient.The relationship between the diffusion coefficient of the POE-cyclohexane system and temperature follows the Arrhenius law.The diffusion activation energy E=6201.73 J/mol,and the pre-exponential factor of the diffusion coefficient D0=2.64×10^(-10) m^(2)/s.This work can provide basic data for exploring the devolatilization of POE polymers and serves as a useful reference for enhancing the effect of devolatilization.
基金supported by the National Natural Science Foundation of China (grant 22208339)the China Postdoctoral Science Foundation (2021M693132)+2 种基金the National Key R&D Program of China (2019YFC1905303)the Doctoral Scientific Research Foundation of Liaoning Province (2021-BS-006)the Youth Innovation Fund of Dalian Institute of Chemical Physics (DICP I202132)。
文摘The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C bonds in mixed polyolefin plastics over non-noble metal catalysts under mild conditions. The nickelbased catalyst involving Ni_(2)Al_(3) phase enables the direct transformation of mixed polyolefin plastics into natural gas, and the gas carbon yield reaches up to 89.6%. Reaction pathway investigation reveals that natural gas comes from the stepwise catalytic cleavage of C–C bonds in polypropylene, and the catalyst prefers catalytic cleavage of terminal C–C bond in the side-chain with the low energy barrier.Additionally, our developed approach is evaluated by the technical economic analysis for an economically competitive production process.
基金This work was supported by the NSFC(No.2007402820374043)SINOPEC(X500030).
文摘A neutral nickel(Ⅱ)catalyst D,{[O-(3-cyclohexyl)(5-Cl)C_6H_2-ortho-C(H)=N-2,6-C_6H_3(i-Pr)_2]Ni(Ph_3P)(Ph)}hasbeen synthesized and characterized by IH-NMR,FTIR and elemental analysis.The results indicate that Al(i-Bu)_3 is aneffective cocatalyst for the neutral nickel catalyst.With bis(1,5-cyclooctadiene)nickel(0)[Ni(COD)_2]or Al(i-Bu)_3 as a co-catalyst,the neutral nickel catalyst D is active for ethylene polymerisation and copolymerisation with polar monomers(tert-butyl 10-undecenoate(BU),methyl 10-undecenoate(MU),allyl alcohol(AA)and 4-penten-1-ol(PO))under mild conditions.The resulting polymers were characterized by (?)H-NMR,FTIR,DSC,and GPC.From the comparative studies,Ni(COD)_2 ismore active than Al(i-Bu)_3 for ethylene homopolymerization,while Al(i-Bu)_3 is more effective than Ni(COD)_2 for ethylenecopolymerisation with polar monomers.The polymerization parameters which affect both the catalytic activity and propertiesof the resulting polyethylene were investigated in detail.Under the conditions of 20 μmol catalyst D and Ni(COD)_2/D=3(molar ratio) in 30 mL toluene solution at 45℃,12×105 Pa ethylene for 20 min,the polymerization activity reaches ashigh as 7.29×105 gPE.(mol.Ni.h)^(-1) and M_η,is 7.16×104 g.mol^(-1).For ethylene copolymerization with polar monomers,theeffect of comonomer concentrations was examined.As high as 0.97 mol% of MU,1.06 mol% of BU,1.04 mol% of AA and1.37 mol% of PO were incorporated into the polymer,respectively,catalyzed by D/Al(i-Bu)_3 system.
文摘Polyolefins that bear a chiral side chain(typically an isobutyl group)experience a so-called macromolecularamplification of chirality:the chiral side-chain induces a slight preference for either tg or tg(?) main chain conformation.Thisslight conformational bias is amplified cooperatively along the chain,and results in preferred chirality of the main chainhelical conformations.As a result,these polymers display a liquid-crystal(LC)phase both in solution and,in the melt as atransient phase on the way to crystallization.The existence of two processes(melt-LC and LC-crystal transitions)results inunconventional behaviors that were first analyzed by Pino and collaborators back in 1975.These polymers also offer a meansto test the structural consequences of recently introduced crystallization schemes.These schemes postulate the formation of atransient liquid-crystal phase as a general scheme for polymer crystallization.