Many extant insects have developed pad structures, euplantulae or arolia on their tarsi to increase friction or enhance adhesion for better mobility. Many polyneopteran insects with euplantulae, for example, Gryllobla...Many extant insects have developed pad structures, euplantulae or arolia on their tarsi to increase friction or enhance adhesion for better mobility. Many polyneopteran insects with euplantulae, for example, Grylloblattodea, Mantophasmatodea and Orthoptera, have been described from the Mesozoic. However, the origin and evolution of stick insects' euplantulae are poorly understood due to rare fossil records. Here, we report the earliest fossil records of Timematodea hitherto, Tumefactipes prolongates gen. et sp. nov. and Granosicorpes Urates gen. et sp. nov., based on three specimens from mid-Cretaceous Burmese amber. Specimens of Tumefactipes prolongates gen. et sp. nov. have extremely specialized and expanded euplantulae on their tarsomere II. These new findings are the first known and the earliest fossil records about euplantula structure within Phasmatodea, demonstrating the diversity of euplantulae in Polyneoptera during the Mesozoic. Such tarsal pads might have increased friction and helped these mid-Cretaceous stick insects to climb more firmly on various surfaces, such as broad leaves, wetted tree branches or ground. These specimens provide more morphological data for us to understand the relationships of Timematodea, Euphasmatodea, Orthoptera and Embioptera, suggesting that Timematodea might be monophyletic with Euphasmatodea rather than Embioptera and Phasmatodea should have a closer relationship with Orthoptera rather than Embioptera.展开更多
Until the advent of phylogenomics,the atypical morphology of extant represen-tatives of the insect orders Grylloblattodea(ice-crawlers)and Mantophasmatodea(gladi-ators)had confounding effects on efforts to resolve the...Until the advent of phylogenomics,the atypical morphology of extant represen-tatives of the insect orders Grylloblattodea(ice-crawlers)and Mantophasmatodea(gladi-ators)had confounding effects on efforts to resolve their placement within Polyneoptera.This recent research has unequivocally shown that these species-poor groups are closely related and form the clade Xenonomia.Nonetheless,divergence dates of these groups re-main poorly constrained,and their evolutionary history debated,as the few well-identified fossils,characterized by a suite of morphological features similar to that of extant forms,are comparatively young.Notably,the extant forms of both groups are wingless,whereas most of the pre-Cretaceous insect fossil record is composed of winged insects,which represents a major shortcoming of the taxonomy.Here,we present new specimens em-bedded in mid-Cretaceous amber from Myanmar and belonging to the recently described species Aristovia danili.The abundant material and pristine preservation allowed a de-tailed documentation of the morphology of the species,including critical head features.Combined with a morphological data set encompassing all Polyneoptera,these new data unequivocally demonstrate that A.danili is a winged stem Grylloblattodea.This discov-ery demonstrates that winglessness was acquired independently in Grylloblattodea and Mantophasmatodea.Concurrently,wing apomorphic traits shared by the new fossil and earlier fossils demonstrate that a large subset of the former Protorthoptera"assemblage,representing a third of all known insect species in some Permian localities,are genuine representatives of Xenonomia.Data from the fossil record depict a distinctive evolution-ary trajectory,with the group being both highly diverse and abundant during the Permian but experiencing a severe decline from the Triassic onwards.展开更多
基金the National Natural Science Foundation of China(grant nos.31730087,41688103 and 31672323)the Program for Changjiang Scholars and Innovative Research Team in University(IRT-17R75)+3 种基金Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan(grant no.IDHT20180518)T.P.G.was supported by the Young Elite Scientist Sponsorship Program by CAST(YESS)Beijing Natural Science Foundation(grant no.5182004)Youth Innovative Research Team of Capital Normal University.
文摘Many extant insects have developed pad structures, euplantulae or arolia on their tarsi to increase friction or enhance adhesion for better mobility. Many polyneopteran insects with euplantulae, for example, Grylloblattodea, Mantophasmatodea and Orthoptera, have been described from the Mesozoic. However, the origin and evolution of stick insects' euplantulae are poorly understood due to rare fossil records. Here, we report the earliest fossil records of Timematodea hitherto, Tumefactipes prolongates gen. et sp. nov. and Granosicorpes Urates gen. et sp. nov., based on three specimens from mid-Cretaceous Burmese amber. Specimens of Tumefactipes prolongates gen. et sp. nov. have extremely specialized and expanded euplantulae on their tarsomere II. These new findings are the first known and the earliest fossil records about euplantula structure within Phasmatodea, demonstrating the diversity of euplantulae in Polyneoptera during the Mesozoic. Such tarsal pads might have increased friction and helped these mid-Cretaceous stick insects to climb more firmly on various surfaces, such as broad leaves, wetted tree branches or ground. These specimens provide more morphological data for us to understand the relationships of Timematodea, Euphasmatodea, Orthoptera and Embioptera, suggesting that Timematodea might be monophyletic with Euphasmatodea rather than Embioptera and Phasmatodea should have a closer relationship with Orthoptera rather than Embioptera.
基金This work was supported by the National Natural Science Foundation of China(no.42272004,42288201,32020103006).
文摘Until the advent of phylogenomics,the atypical morphology of extant represen-tatives of the insect orders Grylloblattodea(ice-crawlers)and Mantophasmatodea(gladi-ators)had confounding effects on efforts to resolve their placement within Polyneoptera.This recent research has unequivocally shown that these species-poor groups are closely related and form the clade Xenonomia.Nonetheless,divergence dates of these groups re-main poorly constrained,and their evolutionary history debated,as the few well-identified fossils,characterized by a suite of morphological features similar to that of extant forms,are comparatively young.Notably,the extant forms of both groups are wingless,whereas most of the pre-Cretaceous insect fossil record is composed of winged insects,which represents a major shortcoming of the taxonomy.Here,we present new specimens em-bedded in mid-Cretaceous amber from Myanmar and belonging to the recently described species Aristovia danili.The abundant material and pristine preservation allowed a de-tailed documentation of the morphology of the species,including critical head features.Combined with a morphological data set encompassing all Polyneoptera,these new data unequivocally demonstrate that A.danili is a winged stem Grylloblattodea.This discov-ery demonstrates that winglessness was acquired independently in Grylloblattodea and Mantophasmatodea.Concurrently,wing apomorphic traits shared by the new fossil and earlier fossils demonstrate that a large subset of the former Protorthoptera"assemblage,representing a third of all known insect species in some Permian localities,are genuine representatives of Xenonomia.Data from the fossil record depict a distinctive evolution-ary trajectory,with the group being both highly diverse and abundant during the Permian but experiencing a severe decline from the Triassic onwards.