期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Design of Polymorphic Operators for Efficient Synthesis of Multifunctional Circuits
1
作者 Radek Tesař Václav Šimek +1 位作者 Richard Růžička Adam Crha 《Journal of Computer and Communications》 2016年第15期151-159,共9页
Systematic effort dedicated to the exploration of feasible ways how to permanently come up with even more space-efficient implementation of digital circuits based on conventional CMOS technology node may soon reach th... Systematic effort dedicated to the exploration of feasible ways how to permanently come up with even more space-efficient implementation of digital circuits based on conventional CMOS technology node may soon reach the ultimate point, which is mostly given by the constraints associated with physical scaling of fundamental electronic components. One of the possible ways of how to mitigate this problem can be recognized in deployment of multifunctional circuit elements. In addition, the polymorphic electronics paradigm, with its considerable independence on a parti- cular technology, opens a way how to fulfil this objective through the adoption of emerging semiconductor materials and advanced synthesis methods. In this paper, main attention is focused on the introduction of polymorphic operators (i.e. digital logic gates) that would allow to further increase the efficiency of multifunctional circuit synthesis techniques. Key aspect depicting the novelty of the proposed approach is primarily based on the intrinsic exploitation of components with ambi- polar conduction property. Finally, relevant models of the polymorphic operators are presented in conjunction with the experimental results. 展开更多
关键词 Digital Circuits RECONFIGURATION Multifunctional Logic Ambipolarity polymorphic electronics Synthesis Methods
在线阅读 下载PDF
Strain induced polymorphism and band structure modulation in low-temperature 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene single crystal
2
作者 Jianfeng Chen Wen Shi +2 位作者 Yuqian Jiang Dong Wang Zhigang Shuai 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第2期275-283,共9页
Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dio... Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates. 展开更多
关键词 charge transport shear strain polymorphism band structure modulation flexible electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部