Systematic effort dedicated to the exploration of feasible ways how to permanently come up with even more space-efficient implementation of digital circuits based on conventional CMOS technology node may soon reach th...Systematic effort dedicated to the exploration of feasible ways how to permanently come up with even more space-efficient implementation of digital circuits based on conventional CMOS technology node may soon reach the ultimate point, which is mostly given by the constraints associated with physical scaling of fundamental electronic components. One of the possible ways of how to mitigate this problem can be recognized in deployment of multifunctional circuit elements. In addition, the polymorphic electronics paradigm, with its considerable independence on a parti- cular technology, opens a way how to fulfil this objective through the adoption of emerging semiconductor materials and advanced synthesis methods. In this paper, main attention is focused on the introduction of polymorphic operators (i.e. digital logic gates) that would allow to further increase the efficiency of multifunctional circuit synthesis techniques. Key aspect depicting the novelty of the proposed approach is primarily based on the intrinsic exploitation of components with ambi- polar conduction property. Finally, relevant models of the polymorphic operators are presented in conjunction with the experimental results.展开更多
Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dio...Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates.展开更多
文摘Systematic effort dedicated to the exploration of feasible ways how to permanently come up with even more space-efficient implementation of digital circuits based on conventional CMOS technology node may soon reach the ultimate point, which is mostly given by the constraints associated with physical scaling of fundamental electronic components. One of the possible ways of how to mitigate this problem can be recognized in deployment of multifunctional circuit elements. In addition, the polymorphic electronics paradigm, with its considerable independence on a parti- cular technology, opens a way how to fulfil this objective through the adoption of emerging semiconductor materials and advanced synthesis methods. In this paper, main attention is focused on the introduction of polymorphic operators (i.e. digital logic gates) that would allow to further increase the efficiency of multifunctional circuit synthesis techniques. Key aspect depicting the novelty of the proposed approach is primarily based on the intrinsic exploitation of components with ambi- polar conduction property. Finally, relevant models of the polymorphic operators are presented in conjunction with the experimental results.
基金supported by the National Natural Science Foundation of China(21273124,21290190,21290191 and 91333202)the Innovative Research Groups of the National Science Foundation of China(21421064)the National Basic Research Program of China(2013CB933503 and 2015CB655002)
文摘Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates.