期刊文献+
共找到191,483篇文章
< 1 2 250 >
每页显示 20 50 100
Programming Shape-Morphing Behavior of Zwitterionic Polymer/Liquid Crystal Composite with Humidity-responsive Self-healing Performance 被引量:1
1
作者 Shao-Jun Chen Hui-Feng Cheng +3 位作者 Bin Du Jiao-Shi Liu Wen-Bo Shen Hai-Tao Zhuo 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第2期212-221,共10页
In this study,a zwitterionic polymer/liquid crystals composite film with programming shape-morphing behavior and humidityresponsive self-healing performance was prepared by blending a zwitterionic polymer and liquid c... In this study,a zwitterionic polymer/liquid crystals composite film with programming shape-morphing behavior and humidityresponsive self-healing performance was prepared by blending a zwitterionic polymer and liquid crystalline azobenzene compound in solution,followed by film-forming in a mold without tedious or multistep synthetic route.The as-obtained zwitterionic polymer/liquid crystal composite film exhibited programming shape-morphing behavior under different stimuli.In this process,the temporary shape of the composite film was memorized after the removal of the stimuli.Such characteristics would fit the requirements of intelligence and energy-saving for stimuliresponsive shape-changing materials.Moreover,the composite film showed humidity-responsive self-healing performances under wet conditions at room temperature.In summary,the simple design and preparation route of the zwitterionic polymer/liquid crystal composite film with programming shape-morphing behavior and mild condition-responsive self-healing performance look promising for the fabrication and practical application of novel photo-driven devices and soft robotics. 展开更多
关键词 Zwitterionic polymer polymer/liquid crystals composite Programming shape-morphing behavior Humidity-responsive self-healing performance Stimuli-responsive shape-changing
原文传递
Effect of Liquid Crystal Properties on the Hemocompatibility of Polymer/Liquid Crystal Compositc Membranes 被引量:1
2
作者 Changren Zhou Zhengii Yi, Mei Tu and Sansong Mu(Institute of Biomedical Engineering, Jinan University, Guangzhou 510630, China) 《Chinese Journal of Biomedical Engineering(English Edition)》 1999年第3期20-21,共2页
关键词 Effect of liquid Crystal Properties on the Hemocompatibility of polymer/liquid Crystal Compositc Membranes
暂未订购
An Emerging Liquid‑Crystalline Conducting Polymer Thermoelectrics:Opportunities and Challenges
3
作者 Zhenqiang Ye Mingdong Zhang +3 位作者 Junyang Deng Lirong Liang Chunyu Du Guangming Chen 《Nano-Micro Letters》 2026年第3期240-273,共34页
Thermoelectric(TE)materials,being capable of converting waste heat into electricity,are pivotal for sustainable energy solutions.Among emerging TE materials,organic TE materials,particularly conjugated polymers,are ga... Thermoelectric(TE)materials,being capable of converting waste heat into electricity,are pivotal for sustainable energy solutions.Among emerging TE materials,organic TE materials,particularly conjugated polymers,are gaining prominence due to their unique combination of mechanical flexibility,environmental compatibility,and solution-processable fabrication.A notable candidate in this field is poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene)(PBTTT),a liquid-crystalline conjugated polymer,with high charge carrier mobility and adaptability to melt-processing techniques.Recent advancements have propelled PBTTT’s figure of merit from below 0.1 to a remarkable 1.28 at 368 K,showcasing its potential for practical applications.This review systematically examines strategies to enhance PBTTT’s TE performance through doping(solution,vapor,and anion exchange doping),composite engineering,and aggregation state controlling.Recent key breakthroughs include ion exchange doping for stable charge modulation,multi-heterojunction architectures reducing thermal conductivity,and proton-coupled electron transfer doping for precise Fermi-level tuning.Despite great progress,challenges still persist in enhancing TE conversion efficiency,balancing or decoupling electrical conductivity,Seebeck coefficient and thermal conductivity,and leveraging melt-processing scalability of PBTTT.By bridging fundamental insights with applied research,this work provides a roadmap for advancing PBTTT-based TE materials toward efficient energy harvesting and wearable electronics. 展开更多
关键词 Thermoelectric materials polymer PBTTT liquid-CRYSTALLINE
在线阅读 下载PDF
Recent Progresses in Synthesis of Cyclic Polymers in Large-scale and Some Functionalized Composites
4
作者 QU Kairu GUO Lyuzhou +3 位作者 WANG Wenbin YAN Xuzhou CAO Xuezheng YANG Zhenzhong 《高等学校化学学报》 北大核心 2026年第1期42-57,共16页
Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynam... Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering. 展开更多
关键词 Cyclic polymer Large-scale synthesis Single-chain nanoparticle Performance Composite
在线阅读 下载PDF
Deterioration and Pore Structure Evolution of GO Modified Polymer Cement Mortar under Salt-freeze-thaw Coupling Effects
5
作者 ZHAO Xinyuan WEI Zhiqiang +3 位作者 QIAO Hongxia LI Shaofei CAO Hui XI Lingling 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期234-246,共13页
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g... To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively. 展开更多
关键词 graphene oxide polymer cement mortar pore structure fractal dimension
原文传递
Advances in polymer-based hydrogel systems for adipose-derived mesenchymal stem cells toward bone regeneration
6
作者 Nivetha Suresh Sundaravadhanan Lekhavadhani Nagarajan Selvamurugan 《World Journal of Orthopedics》 2026年第1期13-28,共16页
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i... Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration. 展开更多
关键词 Mesenchymal stem cells Adipose-derived mesenchymal stem cells Bone tissue engineering HYDROGELS Bone regeneration polymerS
在线阅读 下载PDF
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
7
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 Charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface Solid ion-conductors Solidstate lithium-metal battery
在线阅读 下载PDF
Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells 被引量:1
8
作者 Siming Li Enyang Sun +8 位作者 Pengfei Wei Wei Zhao Suizhu Pei Ying Chen Jie Yang Huili Chen Xi Yin Min Wang Yawei Li 《Chinese Journal of Catalysis》 2025年第5期277-288,共12页
Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon ele... Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon electrocatalyst(M-N-C)is considered an effective alternative to precious metal catalysts.However,its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs.This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid(IL),which exhibits improved performance at both half-cell and membrane electrode assembly scales.The presence of IL significantly inhibits H_(2)O_(2)production,preferentially promoting the 4e–O_(2)reduction reaction,resulting in improved electrocatalytic activity and stability.Additionally,the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses.This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies. 展开更多
关键词 Fuel cell ELECTROCATALYSIS Oxygen reduction reaction Ionic liquid Non-platinum group metal
在线阅读 下载PDF
Compact Integrated Lumped-Element Bandpass Filter Loaded with Defected Ground Structure Based on Multilayer Liquid Crystal Polymer Substrate
9
作者 LIU Weihong CHEN Yuan +1 位作者 HUANG Qian LIU Qingran 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期227-232,共6页
Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In orde... Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In order to further reduce the size and improve the performance of the proposed filter,defected ground structure(DGS)has been implemented in the filter.Based on this structure,the volume of the inductor is reduced by 60%eficiently compared with the inductor without DGS,and the Q-factor is increased up to 257%compared with the traditional multilayer spiral inductor.The measured results indicate that the designed filter has a very sharp stopband,an insertion loss of 2.3dB,and a return loss of 18.6dB in the passband.The whole volume of the fabricated filter is 0.032入_(g)×0.05入_(g)×0.00075入_(g),where Ag is the guided wavelength of the center frequency.The proposed filter is easily integrated into radio-frequency/microwave circuitry at a low manufacturing cost,especially wireless communication. 展开更多
关键词 multilayer liquid crystal polymer defected ground structure bandpass filter MINIATURIZATION lumped element
原文传递
Novel Compact Dual-Band Bandpass Filter Based on Multilayer Liquid Crystal Polymer Substrate
10
作者 LIU Weihong LIU Qingran 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期233-238,共6页
In this paper,a compact defected ground structure loaded ultra high frequency dual-band bandpass flter is designed and implemented based on multilayer liquid crystal polymer technology.This novel filter is simply comp... In this paper,a compact defected ground structure loaded ultra high frequency dual-band bandpass flter is designed and implemented based on multilayer liquid crystal polymer technology.This novel filter is simply composed with several lumped and semi-lumped elements,to create a dual-passband response.In order to enhance the out-of-band rejection,a feedback capacitor C_(z) at the in/out ports of the filter is introduced,and four transmission zeros(TZs)are obtained outside the pass band.Furthermore,the position of TZs can be determined by adjusting the value of C_(z).The schematic and design process of the filter are given in this paper.The center frequencies of dual-band bandpass filter are 0.9 GHz and 2.45 GHz,and the 3-dB bandwidths are 13.7%and 14.3%,respectively.The circuit size is 11 mm×9.5 mm×0.193 mm.The proposed filter has been fabricated and tested,and the measured result is in good agreement with the simulation result. 展开更多
关键词 dual-band bandpass filter multilayer liquid crystal polymer defected ground structure
原文传递
Polymerized-ionic-liquid-based solid polymer electrolyte for ultra-stable lithium metal batteries enabled by structural design of monomer and crosslinked 3D network
11
作者 Lingwang Liu Jiangyan Xue +14 位作者 Yiwen Gao Shiqi Zhang Haiyang Zhang Keyang Peng Xin Zhang Suwan Lu Shixiao Weng Haifeng Tu Yang Liu Zhicheng Wang Fengrui Zhang Daosong Fu Jingjing Xu Qun Luo Xiaodong Wu 《Materials Reports(Energy)》 2025年第1期61-69,共9页
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ... Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability. 展开更多
关键词 polymerized ionic liquid Solid polymer electrolyte Structural design Crosslinked 3D network Lithium metal battery
在线阅读 下载PDF
Rapidly polymerized multifunctional hydrogel sensor initiated by nanocellulose-stabilized MXene-coated liquid metal for advanced wearable applications
12
作者 Xu Huang Carlos Jonay Jiménez +3 位作者 Maria Guix Cristina Madrid Xufré Yisimayili Tuersun Sheng Chu 《Rare Metals》 2025年第9期6402-6416,共15页
Hydrogel strain sensors represent an importan development for research into flexible electronics,being able to convert external stimuli into easily monitored electrical signals.However,finding simple and rapid prepara... Hydrogel strain sensors represent an importan development for research into flexible electronics,being able to convert external stimuli into easily monitored electrical signals.However,finding simple and rapid preparation methods,as well as ensuring compatibility between conductive fillers and the polymer matrix are stil the main challenges for conductive hydrogel applications In this work,we utilize MXene to coat liquid metal dro plets that have been broken by ultrasound while incorpo rating cellulose nanofibers to make them stably dispersed Electron paramagnetic resonance spectroscopy revealed that the obtained composite filler could catalyze the releas of additional hydroxyl radicals from ammonium persulfat to enable the rapid gelation of acrylic acid under ambien conditions.This unique property allows for the mold-based fabrication of hydrogels in various shapes,and we also explored the use of microfluidic devices for printing.Th conductive hydrogels showed good tensile properties small hysteresis loops,high self-healing efficiency(97%conductive recovery),and antimicrobial properties.When assembled into flexible sensors,the hydrogel can accu rately monitor body movements with stable repeatability The outstanding characteristics of the hydrogel not only offer a material basis for the development of novel flexibl sensors,but also have the potential for rapid,large-scale and customized preparation through fast gelation. 展开更多
关键词 MXene liquid metal Fast gelation SELF-HEALING Conductive hydrogel Wearable sensor
原文传递
Electrochemical Properties of PP13TFSI-LiTFSI-P(VdF-HFP) Ionic Liquid Gel Polymer Electrolytes 被引量:2
13
作者 杨培霞 刘磊 +1 位作者 侯俊 张锦秋 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第4期439-444,J0002,共7页
N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI), bis(triflu- oromethanesulfonyl)imide lithium salt (LiTFSI), and poly(vinylidene difluoride-co- hexafluoropropylene) (P(VdF-HFP)... N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI), bis(triflu- oromethanesulfonyl)imide lithium salt (LiTFSI), and poly(vinylidene difluoride-co- hexafluoropropylene) (P(VdF-HFP)) were mixed and made into ionic liquid gel polymer electrolytes (ILGPEs) by solution casting. The morphology of ILGPEs was observed by scanning electron microscopy. It was found that the ILGPE had a loosened structure with liquid phase uniformly distributed. The ionic conductivity, lithium ion transference num- bet and electrochemical window were measured by electrochemical impedance spectroscopy, chronoamperometric and linear sweep voltammetry. The ionic conductivity and lithium ion transference number of this ILGPE reached 0.79 mS/cm and 0.71 at room temperature, and the electrochemical window was 0 to 5.1 V vs. Li+/Li. Battery tests indicated that the ILGPE is stable when being operated in Li/LiFePO4 batteries. The discharge capacity maintained at about 135, 117, and 100 mAh/g at 30, 75, and 150 mA/g rates, respectively. The capacity retentions were almost 100% after 100 cycles without little capacity fading. 展开更多
关键词 Lithium ion battery Ionic liquid polymer electrolyte N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide Poly(vinylidene difluoride-co-hexafluoropropylene)
在线阅读 下载PDF
EXCIMER LASER ABLATING OF LIQUID CRYSTAL POLYMER
14
作者 梅胜敏 左敦稳 余大民 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1998年第2期72-77,共6页
Ablation experiments of A950 Liquid Crystal Polymer (LCP), as a kind of typical matrix of fibre reinforced polymer composites, are carried out in this paper. Data on the ablation of A950 LCP by excimer laser at 24... Ablation experiments of A950 Liquid Crystal Polymer (LCP), as a kind of typical matrix of fibre reinforced polymer composites, are carried out in this paper. Data on the ablation of A950 LCP by excimer laser at 248 nm are presented. The experimental results show that the ablation depth is a linear function of the number of pulse at constant laser fluence, The ablation rate varies with the logorithm of the fluence in a linear manner at different fluences. A satisfactory linear relationship is found between ablation energy and incident fluence. Perhaps due to the plume absorption and thermal effect, the ablation rate varies complicatedly with pulse repetition frequency. 展开更多
关键词 laser processing ablation polymer excimer laser
在线阅读 下载PDF
Self-assembly and UV-curing Property of Polymerized Lyotropic Liquid Crystal Monomer of Sodium 3,4,5-tris(ll-acryloxyundecyloxy)benzoate 被引量:1
15
作者 白玉勤 郭金宝 +1 位作者 王影 魏杰 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期95-101,I0004,共8页
A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by et... A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification, acylation and finally neutralization. The chemi- cal structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis. The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated. The assemblies were char- acterized by polarized optical microscope and X-ray diffraction. The results show that a solution containing 80:20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92:8 with inverted hexagonal (H]I) phase, which was in ac- cordance with the theoretical calculation of critical packing parameter. It suggests that the concentration of the monomer was the key factor to influence assembly structure. Addi- tionally, the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated. The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method. Meanwhile, the La and HII phase nanostructures were both retained after polymerization. 展开更多
关键词 polymerized lyotropic liquid crystal SELF-ASSEMBLY La phase HII phase UV-CURING
在线阅读 下载PDF
Polymerizable Ionic Liquid Copolymer P(MMA-co-BVIm-Br) and Its Effect on the Surface Wettability of PVDF Blend Membranes 被引量:8
16
作者 杜春慧 Xu-min Ma +3 位作者 Chun-jin Wu Mei-qiang Cai Meng-xin Hu Ting Wang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第6期857-868,共12页
Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) was synthesized by radical polymerization technique, and characterized by Fourier transform infrared spectrometry (FTIR), 1H Nuclear magnetic resonance (1H-... Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) was synthesized by radical polymerization technique, and characterized by Fourier transform infrared spectrometry (FTIR), 1H Nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). The resulting copolymer was used to prepare poly(vinylidene fluoride) (PVDF) blend membranes via a phase inversion method. The effects of the copolymer on the polymorphism, surface wettability and zeta potential (0 of the blend membranes were investigated by ATR-FTIR, contact angle instrument and zeta potential analyzer. Scanning electron microscopy (SEM and SEM-EDS) was also applied to investigate the morphology and the surface element changes of the fabricated membranes. The results indicated that P(MMA-co-BVIm-Br) copolymer existed on the surface of the membrane which made the blend membrane have a positive surface during the experimental pH range. The copolymer was also in favor of the formation of βcrystal phase in PVDF membranes. The contact angle experiment indicated that P(MMA-co-BVIm-Br) copolymer could switch the wettability of the blend membranes from hydrophilic to hydrophobic by exchanging Br- anion with PF6-. Compared with pure PVDF membranes, the water flux and water recovery flux of the blend membranes were enhanced obviously. The results from the flux recovery ratio (FR) and total fouling ratio (Rt) all suggested that the blend membranes had good anti-fouling properties. 展开更多
关键词 PVDF membrane polymerized ionic liquid Surface wettability Anti-fouling performance.
原文传递
Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs 被引量:5
17
作者 Xiali Ding Jing Yang Yuming Dong 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2018年第2期75-85,共11页
The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographer... The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency. 展开更多
关键词 HIGH-PERFORMANCE liquid chromatography polymer MONOLITH Preparation methods Small molecules
暂未订购
Synthesis of polymeric ionic liquids material and application in CO2 adsorption 被引量:5
18
作者 Haiying Ran Jiexin Wang +3 位作者 Ahmed A.Abdeltawab Xiaochun Chen Guangren Yu Yinghao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期909-918,共10页
We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized ... We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized by FT-IR,H-NMR,C-NMR, TGA, XRD and SEM. Their COadsorption capacities were measured under different pressures and temperatures by constant-volume technique. It was observed that quaternary ammonium PILs of P[VBTHEA]Cl have higher adsorption capacity for COthan those imidazolium PILs, following P[VBTHEA]Cl > P[VEIm]PF> P[VEIm]BF> P[VEIm]Br, which may be ascribed to higher positive charge density on ammonium cation than that on imidazolium cation and thus stronger interaction with CO, consistent with the results from dual-mode adsorption model that ammonium PILs have much higher CObulk absorption than imidazolium PILs. COadsorption capacity of P[VBTHEA]Cl is 9.02 mg/g under 295 K and 1 bar, which is comparable to that of some other PILs, and is much higher than that of the corresponding ILs monomer. These PILs have good adsorption selectivity for COover Nand regeneration efficiency. 展开更多
关键词 polymeric ionic liquids CO2 ADSORPTION
在线阅读 下载PDF
Polymer Vesicle Sensor through the Self-assembly of Hyperbranched Polymeric Ionic Liquids for the Detection of SO2 Derivatives 被引量:4
19
作者 Zhi-lin Hou Tong Huang +4 位作者 Cai-yun Cai Tahir Resheed 于春阳 Yong-feng Zhou De-yue Yan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第5期602-610,共9页
This work reports a SO2 derivative-detecting and colorful hyperbranched polymeric ionic liquid (HBPIL) vesicle through aqueous self-assembly. By a simple anion-exchange, we achieved the combination of functional sma... This work reports a SO2 derivative-detecting and colorful hyperbranched polymeric ionic liquid (HBPIL) vesicle through aqueous self-assembly. By a simple anion-exchange, we achieved the combination of functional small-molecule probe of acid fuchsin with HBPILs. The obtained HBPIL vesicle displayed ultraviolet absorption at 544 nm, and was used as a novel SO2 derivative sensor with high sensitivity and visualization. Due to the functional ion pairs enriching on the surface, the SO32 detection limit of the HBPILs vesicles was as low as 0.138 gmol/L, which was about 1.5 orders of magnitude lower than that of acid fuchsin. 展开更多
关键词 SO2 SELF-ASSEMBLY polymeric ionic liquids Vesicles
原文传递
Synthesis and characterization of mixing soft-segmented waterborne polyurethane polymer electrolyte with room temperature ionic liquid 被引量:5
20
作者 Yue Jiao Li Feng Wu Ren Jie Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第5期519-522,共4页
Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The ... Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The addition of BMImTFSI results in an increase of the ionic conductivity. At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio), the ionic conductivity reaches 4.27 × 10^-3 S/cm at 30 ℃. These composite polymer electrolytes exhibit good thermal and electrochemical stability, which are high enough to be applied in lithium batteries. 展开更多
关键词 Composite polymer electrolytes Ionic liquid Waterborne polyurethane Ionic conductivity 1-Butyl-3-methylimidazoliumbis[(trifluoromethyl) sulfonyl]imide
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部