The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior...The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior.Herein,in this study we introduce the Dijkstra algorithm from graph theory to characterize polymer networks based on star-shaped multi-armed precursors by employing coarse-grained molecular dynamics simulations coupled with stochastic reaction model.Our research focuses on the structure characteristics of the generated networks,including the number and size of loops,as well as network dispersity characterized by loops.Tracking the number of loops during network generation allows for the identification of the gel point.The size distribution of loops in the network is primarily related to the functionality of the precursors,and the system with fewer precursor arms exhibiting larger average loop sizes.Strain-stress curves indicate that materials with identical functionality and precursor arm lengths generally exhibit superior performance.This method of characterizing network structures helps to refine microscopic structural analysis and contributes to the enhancement and optimization of material properties.展开更多
Customized design of well-defined cathode structures with abundant adsorption sites and rapid diffusion dynamics,holds great promise in filling capacity gap of carbonaceous cathodes towards high-performance Zn-ion hyb...Customized design of well-defined cathode structures with abundant adsorption sites and rapid diffusion dynamics,holds great promise in filling capacity gap of carbonaceous cathodes towards high-performance Zn-ion hybrid supercapacitors(ZHC).Herein,we fabricate a series of dynamics-oriented hierarchical porous carbons derived from the unique organic-inorganic interpenetrating polymer networks.The interpenetrating polymer networks are obtained through physically knitting polyferric chloride(PFC)network into the highly crosslinked resorcinol-formaldehyde(RF)network.Instead of covalent bonding,physical interpenetrating force in such RF-PFC networks efficiently relieves the RF skeleton shrinkage upon pyrolysis.Meanwhile,the in-situ PFC network sacrifices as a structure-directing agent to suppress the macrophase separation,and correspondingly 3D hierarchical porous structure with plentiful ion-diffusion channels(pore volume of 1.35 cm^(3)/g)is generated in the representative HPC_(4) via nanospace occupation and swelling effect.Further removal of Fe fillers leaves behind a large accessible specific surface area of 1550 m^(2)/g for enhanced Zn-ion adsorption.When used as the cathode for ZHC,HPC_(4) demonstrates a remarkable electrochemical performance with a specific capacity of 215.1 mAh/g at 0.5 A/g and a high Zn^(2+)ion diffusion coefficient of 11.1×10^(-18)cm^(2)/s.The ZHC device yields 117.0 Wh/kg energy output at a power density of 272.1 W/kg,coupled with good cycle lifespan(100,000 cycles@10 A/g).This work inspires innovative insights to accelerate Zn diffusion dynamics by structure elaboration towards high-capacity cathode materials.展开更多
Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-network...Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-networks, although the direct evidence for the deduction is still lacking. Herein, a specially-designed RILNs system, in which the inter-component hydrogen bonds can be shielded as needed, was prepared and used to study the micro-structures of RILNs, aiming to verify the existence of mechanical interlocking in RILNs. By changing the pH of the swelling solvent, the effect exerted by the inter-component non-covalent bonds was eliminated, so detailed information of the networks structure was exposed. The small angle X-ray scattering(SAXS) and small-angle neutron scattering(SANS) results indicated that swelling-induced structural evolution of the two sub-networks mutually affected each other, even when the inter-component hydrogen bonds were absent, proving the presence of topological interlocking. The findings may help to draw a more accurate physical image and reveal the detailed structureproperty relationship of RILNs.展开更多
Anion-exchange membranes(AEMs)with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications.During the past decades,polynorbornene(PNB)-based AEMs have...Anion-exchange membranes(AEMs)with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications.During the past decades,polynorbornene(PNB)-based AEMs have shown excellent performance due to their saturated all-carbon-based backbones and diverse strategies to prepare cross-linked membranes.However,nearly all previously reported PNB-based AEMs rely on the alkyl-substituted norbornene monomers,whose low-yielding synthesis leads to high-cost of the AEMs.In addition,the crosslinked PNB-based AEMs usually suffered from mechanical brittleness.Herein,we propose a novel semi-interpenetrating polymer network(s-IPN)strategy to simultaneously enhance mechanical modulus and ionic conductivity,while using commercial 5-vinyl-2-norbornene(VNB)as the single norbornene derivatives to prepare high-performance AEMs.A diallylphenol quaternary ammonium salt was used for photo-induced crosslinking with poly-VNB and various dithiols to produce AEMs with s-IPN structures.The resultant membranes have excellent hydroxide conductivities and alkaline stability in 1 mol/L KOH at 80℃,and are successfully applied in alkaline anion-exchange membrane water electrolyzers to stably operateforover150h.展开更多
Supramolecular polymer networks(SPNs)are celebrated for their dynamic nature,yet they often exhibit inadequate mechanical properties.Thus far,the quest to bolster the mechanical resilience of SPNs while preserving the...Supramolecular polymer networks(SPNs)are celebrated for their dynamic nature,yet they often exhibit inadequate mechanical properties.Thus far,the quest to bolster the mechanical resilience of SPNs while preserving their dynamic character presents a formidable challenge.Herein,we introduce[2]rotaxane into SPN to serve as another cross-link,which could effectively enhance the mechanical robustness of the polymer network without losing the dynamic properties.Compared with SPN,the dually cross-linked network(DPN)demonstrates superior breaking strength,Young’s modulus,puncture force and toughness,underscoring its superior robustness.Furthermore,the cyclic tensile tests reveal that the energy dissipation capacity of DPN rivals,and in some cases surpasses,that of SPN,owing to the efficient energy dissipation pathway facilitated by[2]rotaxane.In addition,benefiting from stable topological structure of[2]rotaxane,DPN exhibits accelerated recovery from deformation,indicating superior elasticity compared to SPN.This strategy elevates the performance of SPNs across multiple metrics,presenting a promising avenue for the development of high-performance dynamic materials.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of A...An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs.展开更多
The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transfor...The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transform infrared(FTIR)spectroscopy,scanning electron microscope(SEM),respectively.Moreover,the conductivity and the voltage-current curves of the electrolytes are measured by electrochemical workstation.The higher porosity and electrolyte uptake are observed in the membranes prepared at lower crosslinker concentration.The suitable cross-linking acrylate monomer improves the porosity and the electrochemical behavior of GPE.A dye-sensitized solar cell(DSSC)employing PGE based on PVDF/poly(ethylene glycol dimethacrylate)(PEGDMA)IPN yields an open-circuit voltage of 0.674 V,short-circuit current of 8.476 mA·cm-2and the conversion efficiency of 2.710% under 100 mW·cm-2illumination.展开更多
Room temperature phosphorescence(RTP) is important in both organic electronics and encryption. Despite rapid advances, a universal approach to robust and tunable RTP materials based on amorphous polymers remains a for...Room temperature phosphorescence(RTP) is important in both organic electronics and encryption. Despite rapid advances, a universal approach to robust and tunable RTP materials based on amorphous polymers remains a formidable challenge. Here, we present a strategy that uses three-dimensional(3 D)confinement of carbon dots in a polymer network to achieve ultra-long lifetime phosphorescence. The RTP of the as-obtained materials was not quenched in different polar organic solvents and the lifetime of the RTP was easily tuned by adjusting the amount of crosslinking or varying the drying temperature of the 3 D molecular network. As a demonstration of potential application, as-obtained RTP materials were successfully used to prepare RTP fibres for flexible textiles. As well as bringing to light a fundamental principle for the construction of polymer materials with RTP, we have endowed traditional carbon dots and polymers with fresh features that will expand potential applications.展开更多
The interpenetrating polymer network(IPN) systems have attracted a lot of attention because of their unique two-phase structure and properties. There have been many publications concerning the IPNs in which poly (isop...The interpenetrating polymer network(IPN) systems have attracted a lot of attention because of their unique two-phase structure and properties. There have been many publications concerning the IPNs in which poly (isoprene) (PIP) or polyacrylates (PAC) is formed as one of the networks.In the present study, Four serles of natural rubber(NR)/PAC IPNs were prepared and their morphologies were investigated with dynamic mechanics analysis(DMA) and transmission electron microscopy (TEM).展开更多
A novel polystyrene-poly(hydroxamic acid)interpenetrating network resin(PS-PHA IPNs)was successfully synthesized by suspension polymerization and interpenetrating network technology.The effects of various experimental...A novel polystyrene-poly(hydroxamic acid)interpenetrating network resin(PS-PHA IPNs)was successfully synthesized by suspension polymerization and interpenetrating network technology.The effects of various experimental parameters,including pH,contact time and initial concentrations of rare earth ions on the adsorption capacity were discussed in detail.Under the condition of pH 4.0(La^(3+)),1.0(Ce^(3+))and 3.0(Y^(3+)),respectively,PS-PHA IPNs can reach equilibrium adsorption in 6 h and get maximum adsorption capacities(1.08,1.43 and 1.36 mmol/g).The adsorption process of PS-PHA IPNs for La(Ⅲ),Ce(Ⅲ)and Y(Ⅲ)ions can be described by liquid membrane diffusion,particle diffusion and chemical reaction.The adsorption process is a spontaneous and endothermic process and can be better simulated by Langmuir adsorption isotherm.The studies of SEM-EDS indicate that rare earth ions are adsorbed on the surface of PS-PHA IPNs.Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis further prove that rare earth ions are chemisorbed on the surface of PS-PHA IPNs.These results reveal that the as-prepared PS-PHA IPNs is a promising adsorbent for adsorption of rare earth ions due to their higher adsorption capacity than other adsorbents.展开更多
Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-...Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.展开更多
A photo-controlled approach is developed to regulate the interpenetrating polymer network(IPN)topology by varying the connecting structure between the first and second networks.The approach is based on multifunctional...A photo-controlled approach is developed to regulate the interpenetrating polymer network(IPN)topology by varying the connecting structure between the first and second networks.The approach is based on multifunctional inimer(Vinyl-o NB-Br)possessing three moieties,i.e.,an acrylate-based double bond for incorporation within a polymer network,a Br group for grafting polymerization to get connectIPN(c-IPN),and an o-nitrobenzyl spacer for photocleaving to convert the c-IPN to disconnected-IPN(d-IPN)with UV light irradiation.Such design allows for finely controlling the connection degree between two networks.A systematic study on the mechanical property of a series of samples with different connection degrees thus can be conducted.The results reveal that decreasing the connecting degree between two networks of IPN made a negligible contribution to materials'mechanical properties.展开更多
A series of polyurethane (PU)/vinyl ester resin (VER) simultaneous IPNs (interpenetrating polymer networks) with different component ratios and comonomers types introduced to VER were synthesized and the polymer...A series of polyurethane (PU)/vinyl ester resin (VER) simultaneous IPNs (interpenetrating polymer networks) with different component ratios and comonomers types introduced to VER were synthesized and the polymerization processes were traced by Fourier transform infrared spectroscopy (FTIR) to study the kinetics of IPNs and hydrogen bonding action within multi-component. Furthermore, the relationship of polymerization process with morphology was investigated in detail for the first time by the morphological information given by chemical action between two networks besides physical entanglement, atomic force microscope (AFM) observation and dynamic mechanical analysis (DMA). The results indicated that the degree of hydrogen bonding (Xb,UT,%), calculated from functional group conversional rate and fine structures gained from FT-IR spectra of two networks, were affected by PU/VER weight ratios and comonomer types of VER. The relationship of formation kinetics and morphology showed that the change of Xb,UT (%) values exhibited excellent consistency with that of phase sizes observed by AFM and detected by DMA.展开更多
Interpenetrating polymer networks (IPNs) composed of acrylate-modified polyurethane (PU)/unsaturated polyester (UP) resin via simultaneous polymerization with various component ratios of PU/UP were prepared. The...Interpenetrating polymer networks (IPNs) composed of acrylate-modified polyurethane (PU)/unsaturated polyester (UP) resin via simultaneous polymerization with various component ratios of PU/UP were prepared. The polymerization processes of IPNs were traced through infrared spectrum (IR) techniques, by which the phase separation in systems could be controlled effectively. Results for the morphology and miscibility among multiple phases of IPNs, obtained by transmission electron microscope (TEM) indicated that the domains between two phases were constricted in nanometer scales. The dynamic mechanical thermal analyzer (DMTA) detection results revealed that the loss factor (tanS) and loss modulus (E″) increased with the polyurethane amounts in system, and the peak value in curves of tanδ and E″ appeared toward low temperature ranges. Maximum tanδ values of all samples were above 0.3 in the nearly 50℃ ranges. Also, the mechanical properties of PU/UP IPNs were studied in detail.展开更多
A series of Polyurethane (PU)/bisphenol A based Epoxy Resin(EP) Interpenetrating Polymer Networks(IPN) were synthesized and characterized by SEM, DSC, TGA and DMTA. It was found that IPN shows the best compatibility a...A series of Polyurethane (PU)/bisphenol A based Epoxy Resin(EP) Interpenetrating Polymer Networks(IPN) were synthesized and characterized by SEM, DSC, TGA and DMTA. It was found that IPN shows the best compatibility and damping properties when the ratio of PU/EP is 80 to 20. The results show that chain-extender and higher molecular weight of PPG are able to improve the properties of compatibility, damping and thermal properties.展开更多
Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenolwith formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by directglycidylati...Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenolwith formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by directglycidylation of α-resorcylic acid (RA), a naturally occurring phenolic monomer. GDGB was crosslinked in thepresence of BioNovolac by anionic polymerization. Fourier transform infrared spectroscopy (FTIR) confirmedthe formation of semi-interpenetrating polymer networks. The glass transition temperature and moduli of biobasedcrosslinked systems were observed to increase with increasing GDGB content. Active chain density andmass retention measured by dynamic mechanical analysis (DMA) and Soxhlet extraction, respectively, indicated ahigh crosslink density of the cured networks. Scanning electron microscopy (SEM) images depicted thehomogeneity of the bulk phase. The preparation of bio-based epoxy-novolac thermoset network resulted inreduced consumption of petroleum-based chemicals.展开更多
A novel photonic composite film based on a luminescent dicyanodistyrylbenzene-based liquid crystal polymer network(LCN) was fabricated by using a silica colloidal crystal as a template. The upper part of inverse opa...A novel photonic composite film based on a luminescent dicyanodistyrylbenzene-based liquid crystal polymer network(LCN) was fabricated by using a silica colloidal crystal as a template. The upper part of inverse opal structure and the luminescence characteristics of dicyanodistyrylbenzene-based moiety endowed the resulting bilayer photonic film with structural color arising from coherent Bragg reflection and fluorescence properties, respectively. A fluorescence enhancement phenomenon was observed in the photonic film due to the overlap between the reflection band and emission band of the fluorescent LCN. More importantly, the photo-induced irreversible Z/E photoisomerization of dicyanodistyrylbenzene-based moiety in the photonic film led to both a reflection spectral shift and an observable fluorescence variation. On the basis of this effective phototuning process, microscopic patterning of photonic film was developed under both fluorescence mode and reflection mode. The work demonstrated here provides a new route to construct photo-responsive photonic film.展开更多
The pH /temperature dually responsive microgels of interpenetrating polymer network( IPN) structure composed of poly( N-isopropylacrylamide)( PNIPAM) network and poly( acrylic acid)( PAA) network( PNIPAM /PAA IPN micr...The pH /temperature dually responsive microgels of interpenetrating polymer network( IPN) structure composed of poly( N-isopropylacrylamide)( PNIPAM) network and poly( acrylic acid)( PAA) network( PNIPAM /PAA IPN microgels) were synthesized by seed emulsion polymerization. The results obtained by dynamic laser light scattering( DLLS) show that the microgels have good pH /temperature dual sensitivities. The temperature sensitive component and the pH sensitive component inside the microgels have little interference with each other. The rheological properties of the concentrated PNIPAM /PAA IPN microgel dispersions as a function of temperature at pH 4. 0 or 7. 0 were investigated by viscometer,and the results displayed that only at pH 7. 0 the dispersions presented thermoreversible thickening behavior. Then the PNIPAM /PAA fibers were prepared by self-assembly of the PNIPAM /PAA IPN microgels in the ice-crystal templates formed by unidirectional liquid nitrogen freezing method. Field emission scanning electron microscopy( FESEM) images indicate that the PNIPAM /PAA fibers are rounded,randomly orientated and interweaved.展开更多
The synthesis of pseudo- and semi-interpenetrating polymer networks (IPNs) based on polydimethylsiloxane (PDMS) and polystyrene (PS) is described. IPNs were obtained by simultaneous and in situ sequential synthesis pr...The synthesis of pseudo- and semi-interpenetrating polymer networks (IPNs) based on polydimethylsiloxane (PDMS) and polystyrene (PS) is described. IPNs were obtained by simultaneous and in situ sequential synthesis procedure. The preliminary studies on IPNs properties such as transition temperature, microphase separation and mechanical behaviors have been carried out by using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The experimental evidence clearly showed that semi-IPNs obtained by sequential synthesis procedure have higher interpenetrating extent than pseudo-IPNs synthesized by simultaneous procedure. Over the full composition, the PDMS/PS IPNs are immiscible. The pseudo-IPNs microphase separation can be greatly subdued through the formation of grafting bonds between two networks as well as the kinetic rate-matching of the individual network crosslinking.展开更多
基金supported by the National Natural Science Foundation of China(No.22373024,22463006,and 52463015)the joint fund between the Gansu Provincial Science and Technology Plan Project(Natural Science Foundation)(No.23JRRA794)the Open Research Fund of the Songshan Lake Materials Laboratory(No.2023SLABFK11)。
文摘The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior.Herein,in this study we introduce the Dijkstra algorithm from graph theory to characterize polymer networks based on star-shaped multi-armed precursors by employing coarse-grained molecular dynamics simulations coupled with stochastic reaction model.Our research focuses on the structure characteristics of the generated networks,including the number and size of loops,as well as network dispersity characterized by loops.Tracking the number of loops during network generation allows for the identification of the gel point.The size distribution of loops in the network is primarily related to the functionality of the precursors,and the system with fewer precursor arms exhibiting larger average loop sizes.Strain-stress curves indicate that materials with identical functionality and precursor arm lengths generally exhibit superior performance.This method of characterizing network structures helps to refine microscopic structural analysis and contributes to the enhancement and optimization of material properties.
基金financially supported by the National Natural Science Foundation of China(Nos.22272118,22172111,21905207,and 22309134)the Science and Technology Commission of Shanghai Municipality(Nos.22ZR1464100,20ZR1460300,and 19DZ2271500)+3 种基金China Postdoctoral Science Foundation(No.2022M712402)Shanghai Rising-Star Program(No.23YF1449200)Zhejiang Provincial Science and Technology Project(No.2022C01182)the Fundamental Research Funds for the Central Universities(Nos.22120210529 and 2023-3-YB-07)。
文摘Customized design of well-defined cathode structures with abundant adsorption sites and rapid diffusion dynamics,holds great promise in filling capacity gap of carbonaceous cathodes towards high-performance Zn-ion hybrid supercapacitors(ZHC).Herein,we fabricate a series of dynamics-oriented hierarchical porous carbons derived from the unique organic-inorganic interpenetrating polymer networks.The interpenetrating polymer networks are obtained through physically knitting polyferric chloride(PFC)network into the highly crosslinked resorcinol-formaldehyde(RF)network.Instead of covalent bonding,physical interpenetrating force in such RF-PFC networks efficiently relieves the RF skeleton shrinkage upon pyrolysis.Meanwhile,the in-situ PFC network sacrifices as a structure-directing agent to suppress the macrophase separation,and correspondingly 3D hierarchical porous structure with plentiful ion-diffusion channels(pore volume of 1.35 cm^(3)/g)is generated in the representative HPC_(4) via nanospace occupation and swelling effect.Further removal of Fe fillers leaves behind a large accessible specific surface area of 1550 m^(2)/g for enhanced Zn-ion adsorption.When used as the cathode for ZHC,HPC_(4) demonstrates a remarkable electrochemical performance with a specific capacity of 215.1 mAh/g at 0.5 A/g and a high Zn^(2+)ion diffusion coefficient of 11.1×10^(-18)cm^(2)/s.The ZHC device yields 117.0 Wh/kg energy output at a power density of 272.1 W/kg,coupled with good cycle lifespan(100,000 cycles@10 A/g).This work inspires innovative insights to accelerate Zn diffusion dynamics by structure elaboration towards high-capacity cathode materials.
基金financially supported by the National Natural Science Foundation of China (Nos. 52033011, 52173092 and 51973237)Natural Science Foundation of Guangdong Province(Nos. 2019B1515120038, 2020A1515011276 and 2021A1515010417)+4 种基金Science and Technology Planning Project of Guangzhou City (No. 202201011568)the Talented Program of Guizhou University (No. X2022008)Fundamental Research Funds for the Central Universities,Sun Yat-sen University (No. 23yxqntd002)GBRCE for Functional Molecular Engineering,the Youth Innovation Promotion Association,CAS(No. 2020010)Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110908)。
文摘Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-networks, although the direct evidence for the deduction is still lacking. Herein, a specially-designed RILNs system, in which the inter-component hydrogen bonds can be shielded as needed, was prepared and used to study the micro-structures of RILNs, aiming to verify the existence of mechanical interlocking in RILNs. By changing the pH of the swelling solvent, the effect exerted by the inter-component non-covalent bonds was eliminated, so detailed information of the networks structure was exposed. The small angle X-ray scattering(SAXS) and small-angle neutron scattering(SANS) results indicated that swelling-induced structural evolution of the two sub-networks mutually affected each other, even when the inter-component hydrogen bonds were absent, proving the presence of topological interlocking. The findings may help to draw a more accurate physical image and reveal the detailed structureproperty relationship of RILNs.
基金financially supported by the Ministry of Science and Technology of China under the National Key R&D Program of China (No.2023YFB3811200)the National Natural Science Foundation of China (No.22075292).
文摘Anion-exchange membranes(AEMs)with high conductivity and stability are essential components of hydrogen related water electrolysis and fuel cell applications.During the past decades,polynorbornene(PNB)-based AEMs have shown excellent performance due to their saturated all-carbon-based backbones and diverse strategies to prepare cross-linked membranes.However,nearly all previously reported PNB-based AEMs rely on the alkyl-substituted norbornene monomers,whose low-yielding synthesis leads to high-cost of the AEMs.In addition,the crosslinked PNB-based AEMs usually suffered from mechanical brittleness.Herein,we propose a novel semi-interpenetrating polymer network(s-IPN)strategy to simultaneously enhance mechanical modulus and ionic conductivity,while using commercial 5-vinyl-2-norbornene(VNB)as the single norbornene derivatives to prepare high-performance AEMs.A diallylphenol quaternary ammonium salt was used for photo-induced crosslinking with poly-VNB and various dithiols to produce AEMs with s-IPN structures.The resultant membranes have excellent hydroxide conductivities and alkaline stability in 1 mol/L KOH at 80℃,and are successfully applied in alkaline anion-exchange membrane water electrolyzers to stably operateforover150h.
基金support from the National Natural Science Foundation of China(Nos.22122105 and22071152)Natural Science Foundation of Shanghai(No.22dz1207603)+4 种基金the Shuguang Program of Shanghai Education Development Foundation and the Shanghai Municipal Education Commission(No.22SG11)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(No.SN-ZJU-SIAS-006)L.Y.acknowledges the financial support from the National Natural Science Foundation of China(No.22305150)Z.Z.acknowledges the financial support from the National Natural Science Foundation of China(Nos.22101175 and 52333001)supported by State Key Laboratory of Polyolefins and Catalysis and Shanghai Key Laboratory of Catalysis Technology for Polyolefins(No.SKL-LCTP-202301)。
文摘Supramolecular polymer networks(SPNs)are celebrated for their dynamic nature,yet they often exhibit inadequate mechanical properties.Thus far,the quest to bolster the mechanical resilience of SPNs while preserving their dynamic character presents a formidable challenge.Herein,we introduce[2]rotaxane into SPN to serve as another cross-link,which could effectively enhance the mechanical robustness of the polymer network without losing the dynamic properties.Compared with SPN,the dually cross-linked network(DPN)demonstrates superior breaking strength,Young’s modulus,puncture force and toughness,underscoring its superior robustness.Furthermore,the cyclic tensile tests reveal that the energy dissipation capacity of DPN rivals,and in some cases surpasses,that of SPN,owing to the efficient energy dissipation pathway facilitated by[2]rotaxane.In addition,benefiting from stable topological structure of[2]rotaxane,DPN exhibits accelerated recovery from deformation,indicating superior elasticity compared to SPN.This strategy elevates the performance of SPNs across multiple metrics,presenting a promising avenue for the development of high-performance dynamic materials.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金funded by National Natural Science Foundation of China(22278023,22208010)Beijing Municipal Science and Technology Planning Project(Z221100002722002)+3 种基金Bingtuan Science and Technology Program(2022DB025)Beijing Natural Science Foundation(2222015)Sinopec Group(323034)the long-term from the Ministry of Finance and the Ministry of Education of PRC。
文摘An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs.
文摘The gel polymer electrolytes(GPEs)based on poly(vinylidence fluoride)(PVDF)/acrylate interpenetrating polymer network(IPN)are prepared.The micro-phase separation type GPEs are characterized by Fourier transform infrared(FTIR)spectroscopy,scanning electron microscope(SEM),respectively.Moreover,the conductivity and the voltage-current curves of the electrolytes are measured by electrochemical workstation.The higher porosity and electrolyte uptake are observed in the membranes prepared at lower crosslinker concentration.The suitable cross-linking acrylate monomer improves the porosity and the electrochemical behavior of GPE.A dye-sensitized solar cell(DSSC)employing PGE based on PVDF/poly(ethylene glycol dimethacrylate)(PEGDMA)IPN yields an open-circuit voltage of 0.674 V,short-circuit current of 8.476 mA·cm-2and the conversion efficiency of 2.710% under 100 mW·cm-2illumination.
基金supported by the National Natural Science Foundation of China (No.31890774)Excellent Young Scholar Sponsorship Program by National Forestry and Grassland Administration of China Funding (No.2019132611)+1 种基金Heilong Jiang Postdoctoral Science Foundation (No.LBH-Z18005)Young Elite Scientists Sponsorship Program by CAST (No.2018QNRC001)。
文摘Room temperature phosphorescence(RTP) is important in both organic electronics and encryption. Despite rapid advances, a universal approach to robust and tunable RTP materials based on amorphous polymers remains a formidable challenge. Here, we present a strategy that uses three-dimensional(3 D)confinement of carbon dots in a polymer network to achieve ultra-long lifetime phosphorescence. The RTP of the as-obtained materials was not quenched in different polar organic solvents and the lifetime of the RTP was easily tuned by adjusting the amount of crosslinking or varying the drying temperature of the 3 D molecular network. As a demonstration of potential application, as-obtained RTP materials were successfully used to prepare RTP fibres for flexible textiles. As well as bringing to light a fundamental principle for the construction of polymer materials with RTP, we have endowed traditional carbon dots and polymers with fresh features that will expand potential applications.
文摘The interpenetrating polymer network(IPN) systems have attracted a lot of attention because of their unique two-phase structure and properties. There have been many publications concerning the IPNs in which poly (isoprene) (PIP) or polyacrylates (PAC) is formed as one of the networks.In the present study, Four serles of natural rubber(NR)/PAC IPNs were prepared and their morphologies were investigated with dynamic mechanics analysis(DMA) and transmission electron microscopy (TEM).
基金Projects supported by the National Natural Science Foundation of China(21206199)the Natural Science Foundation of Hunan Province(2018JJ2484)+1 种基金the Doctoral Fund of Ministry of Education of China(20100162120028)the Scientific Research Project of Jiujiang University(2014KJYB012)。
文摘A novel polystyrene-poly(hydroxamic acid)interpenetrating network resin(PS-PHA IPNs)was successfully synthesized by suspension polymerization and interpenetrating network technology.The effects of various experimental parameters,including pH,contact time and initial concentrations of rare earth ions on the adsorption capacity were discussed in detail.Under the condition of pH 4.0(La^(3+)),1.0(Ce^(3+))and 3.0(Y^(3+)),respectively,PS-PHA IPNs can reach equilibrium adsorption in 6 h and get maximum adsorption capacities(1.08,1.43 and 1.36 mmol/g).The adsorption process of PS-PHA IPNs for La(Ⅲ),Ce(Ⅲ)and Y(Ⅲ)ions can be described by liquid membrane diffusion,particle diffusion and chemical reaction.The adsorption process is a spontaneous and endothermic process and can be better simulated by Langmuir adsorption isotherm.The studies of SEM-EDS indicate that rare earth ions are adsorbed on the surface of PS-PHA IPNs.Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)analysis further prove that rare earth ions are chemisorbed on the surface of PS-PHA IPNs.These results reveal that the as-prepared PS-PHA IPNs is a promising adsorbent for adsorption of rare earth ions due to their higher adsorption capacity than other adsorbents.
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.
基金financially supported by the National Natural Science Foundation of China(No.51973023)Sichuan Science and Technology Program(No.2021JDRC0014)the Colleges and Universities Twenty Foundational Projects of Jinan City(No.2021GXRC068)。
文摘A photo-controlled approach is developed to regulate the interpenetrating polymer network(IPN)topology by varying the connecting structure between the first and second networks.The approach is based on multifunctional inimer(Vinyl-o NB-Br)possessing three moieties,i.e.,an acrylate-based double bond for incorporation within a polymer network,a Br group for grafting polymerization to get connectIPN(c-IPN),and an o-nitrobenzyl spacer for photocleaving to convert the c-IPN to disconnected-IPN(d-IPN)with UV light irradiation.Such design allows for finely controlling the connection degree between two networks.A systematic study on the mechanical property of a series of samples with different connection degrees thus can be conducted.The results reveal that decreasing the connecting degree between two networks of IPN made a negligible contribution to materials'mechanical properties.
基金supported by the National Natural Science Foundation of China under grant No.50675045the State Key Lab of Advanced Welding Production Technology(Harbin Institute of Technology).
文摘A series of polyurethane (PU)/vinyl ester resin (VER) simultaneous IPNs (interpenetrating polymer networks) with different component ratios and comonomers types introduced to VER were synthesized and the polymerization processes were traced by Fourier transform infrared spectroscopy (FTIR) to study the kinetics of IPNs and hydrogen bonding action within multi-component. Furthermore, the relationship of polymerization process with morphology was investigated in detail for the first time by the morphological information given by chemical action between two networks besides physical entanglement, atomic force microscope (AFM) observation and dynamic mechanical analysis (DMA). The results indicated that the degree of hydrogen bonding (Xb,UT,%), calculated from functional group conversional rate and fine structures gained from FT-IR spectra of two networks, were affected by PU/VER weight ratios and comonomer types of VER. The relationship of formation kinetics and morphology showed that the change of Xb,UT (%) values exhibited excellent consistency with that of phase sizes observed by AFM and detected by DMA.
基金supported by the Scientific Research Foundation of Harbin Institute of Technology(HIT.2002.56)the Postdoctoral Foundation of Heilongjiang Province,China
文摘Interpenetrating polymer networks (IPNs) composed of acrylate-modified polyurethane (PU)/unsaturated polyester (UP) resin via simultaneous polymerization with various component ratios of PU/UP were prepared. The polymerization processes of IPNs were traced through infrared spectrum (IR) techniques, by which the phase separation in systems could be controlled effectively. Results for the morphology and miscibility among multiple phases of IPNs, obtained by transmission electron microscope (TEM) indicated that the domains between two phases were constricted in nanometer scales. The dynamic mechanical thermal analyzer (DMTA) detection results revealed that the loss factor (tanS) and loss modulus (E″) increased with the polyurethane amounts in system, and the peak value in curves of tanδ and E″ appeared toward low temperature ranges. Maximum tanδ values of all samples were above 0.3 in the nearly 50℃ ranges. Also, the mechanical properties of PU/UP IPNs were studied in detail.
文摘A series of Polyurethane (PU)/bisphenol A based Epoxy Resin(EP) Interpenetrating Polymer Networks(IPN) were synthesized and characterized by SEM, DSC, TGA and DMTA. It was found that IPN shows the best compatibility and damping properties when the ratio of PU/EP is 80 to 20. The results show that chain-extender and higher molecular weight of PPG are able to improve the properties of compatibility, damping and thermal properties.
文摘Bio-based phenol-formaldehyde polymer (BioNovolac) was developed by reacting molar excess of bio-oil/phenolwith formaldehyde in acidic medium. Glycidyl 3,5-diglycidoxybenzoate (GDGB), was prepared by directglycidylation of α-resorcylic acid (RA), a naturally occurring phenolic monomer. GDGB was crosslinked in thepresence of BioNovolac by anionic polymerization. Fourier transform infrared spectroscopy (FTIR) confirmedthe formation of semi-interpenetrating polymer networks. The glass transition temperature and moduli of biobasedcrosslinked systems were observed to increase with increasing GDGB content. Active chain density andmass retention measured by dynamic mechanical analysis (DMA) and Soxhlet extraction, respectively, indicated ahigh crosslink density of the cured networks. Scanning electron microscopy (SEM) images depicted thehomogeneity of the bulk phase. The preparation of bio-based epoxy-novolac thermoset network resulted inreduced consumption of petroleum-based chemicals.
基金financially supported by the National Natural Science Foundation of China (Nos. 51773009, 51573012 and 51373013)
文摘A novel photonic composite film based on a luminescent dicyanodistyrylbenzene-based liquid crystal polymer network(LCN) was fabricated by using a silica colloidal crystal as a template. The upper part of inverse opal structure and the luminescence characteristics of dicyanodistyrylbenzene-based moiety endowed the resulting bilayer photonic film with structural color arising from coherent Bragg reflection and fluorescence properties, respectively. A fluorescence enhancement phenomenon was observed in the photonic film due to the overlap between the reflection band and emission band of the fluorescent LCN. More importantly, the photo-induced irreversible Z/E photoisomerization of dicyanodistyrylbenzene-based moiety in the photonic film led to both a reflection spectral shift and an observable fluorescence variation. On the basis of this effective phototuning process, microscopic patterning of photonic film was developed under both fluorescence mode and reflection mode. The work demonstrated here provides a new route to construct photo-responsive photonic film.
基金National Natural Science Foundations of China(Nos.51073033,51373030)the Fundamental Research Funds for the Central Universities,China(No.2232014D3-43)
文摘The pH /temperature dually responsive microgels of interpenetrating polymer network( IPN) structure composed of poly( N-isopropylacrylamide)( PNIPAM) network and poly( acrylic acid)( PAA) network( PNIPAM /PAA IPN microgels) were synthesized by seed emulsion polymerization. The results obtained by dynamic laser light scattering( DLLS) show that the microgels have good pH /temperature dual sensitivities. The temperature sensitive component and the pH sensitive component inside the microgels have little interference with each other. The rheological properties of the concentrated PNIPAM /PAA IPN microgel dispersions as a function of temperature at pH 4. 0 or 7. 0 were investigated by viscometer,and the results displayed that only at pH 7. 0 the dispersions presented thermoreversible thickening behavior. Then the PNIPAM /PAA fibers were prepared by self-assembly of the PNIPAM /PAA IPN microgels in the ice-crystal templates formed by unidirectional liquid nitrogen freezing method. Field emission scanning electron microscopy( FESEM) images indicate that the PNIPAM /PAA fibers are rounded,randomly orientated and interweaved.
文摘The synthesis of pseudo- and semi-interpenetrating polymer networks (IPNs) based on polydimethylsiloxane (PDMS) and polystyrene (PS) is described. IPNs were obtained by simultaneous and in situ sequential synthesis procedure. The preliminary studies on IPNs properties such as transition temperature, microphase separation and mechanical behaviors have been carried out by using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The experimental evidence clearly showed that semi-IPNs obtained by sequential synthesis procedure have higher interpenetrating extent than pseudo-IPNs synthesized by simultaneous procedure. Over the full composition, the PDMS/PS IPNs are immiscible. The pseudo-IPNs microphase separation can be greatly subdued through the formation of grafting bonds between two networks as well as the kinetic rate-matching of the individual network crosslinking.